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Abstract. We present an experiment on fifty multilayer per-
ceptrons trained for streamflow forecasting on three water-
sheds using bootstrapped input series. This type of neural
network is common in hydrology and using multiple train-
ing repetitions (ensembling) is a popular practice: the infor-
mation issued by the ensemble is then aggregated and con-
sidered to be the final output. Some authors proposed that
the ensemble could serve the calculation of confidence in-
tervals around the ensemble mean. In the following, we
are interested in the reliability of confidence intervals ob-
tained in such fashion and in tracking the evolution of the
ensemble of neural networks during the training process.
For each iteration of this process, the mean of the ensem-
ble is computed along with various confidence intervals. The
performance of the ensemble mean is evaluated based on
the mean absolute error. Since the ensemble of neural net-
works resemble an ensemble streamflow forecast, we also
use ensemble-specific quality assessment tools such as the
Continuous Ranked Probability Score to quantify the fore-
casting performance of the ensemble formed by the neural
networks repetitions. We show that while the performance of
the single predictor formed by the ensemble mean improves
throughout the training process, the reliability of the associ-
ated confidence intervals starts to decrease shortly after the
initiation of this process. While there is no moment during
the training where the reliability of the confidence intervals is
perfect, we show that it is best after approximately 5 to 10 it-
erations, depending on the basin. We also show that the Con-
tinuous Ranked Probability Score and the logarithmic score
do not evolve in the same fashion during the training, due to
a particularity of the logarithmic score.

Correspondence to:M.-A. Boucher
(marie-a.boucher.1@ulaval.ca)

1 Introduction

Neural networks are used in hydrology since the 1990’s (e.g.
Kang et al., 1993; Karunanithi et al., 1994; Campolo et al.,
1999; Tokar and Johnson, 1999). They have also been the
object of some experiments in meteorology (e.g.Hsieh and
Tang, 1998; Valverde Raḿırez et al., 2005) and climatology
(e.g.Knutti et al., 2003). Although it can be argued that neu-
ral networks models cannot contribute to the understanding
of the processes at hand and that they are most often over
parametrized, they remain very useful as simple, rapidly im-
plemented, rainfall-runoff models.

One of the most frequently used neural network architec-
ture in water resources research (e.g.Coulibaly et al., 1999;
Maier and Dandy, 2000; Singh and Deo, 2007) is the multi-
layer perceptron (Rosenblatt, 1958). It is capable of learn-
ing any multivariate non-linear relationship between input
and output values, if provided with a database of sufficient
length and if satisfactory training is performed (Cybenko,
1989; Hornik et al., 1989). However, it is rarely the case
that only one network is created and trained to solve a spe-
cific problem (e.g.Iyer and Rhinehart, 1999). Since the 90’s
(e.g. Hansen and Salamon, 1990) it has been proposed to
train an ensemble of neural networks for each problem at
hand. Subsequently, Breiman’s bagging (Breiman, 1996),
Shapire and Freund boosting (e.g.Freund and Shapire, 1996;
Shrestha and Solomatine, 2006a) and other similar or derived
techniques enforced the ensembling practices among the ma-
chine learning community. Ensembling is one of the avail-
able strategies to improve generalization capacity. This is
based on the assumption that the gradient descent optimiza-
tion for a single neural network can fall into a local minimum
and therefore not provide the best solution. Training multi-
ple networks from various random starting points provides
a better coverage of the parameter space. The individual neu-
ral models forming the ensemble are usually aggregated to
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Table 1. Characteristics of the watersheds and corresponding databases used in the experiment.

Basin Area Daily precipitation Daily streamflow Database length
km2 (mm) (mm) (days)

Mean St. dev. Mean St. dev. Training Validation

La Golo 930 3.99 6.84 2.40 2.42 2176 2131
Serein 1120 2.31 4.12 0.61 0.86 5225 5231
Leaf 1949 3.92 10.14 1.37 2.90 4895 4917

provide a single final output, either by simple or weighted
averaging, by a regression between ensemble members or by
other more sophisticated means (e.g.Freitas and Rodrigues,
2006).

Some authors also suggested that an ensemble could be
used to issue confidence intervals to be associated with the
forecast (e.g.Lajbcygier and Connor, 1997; Papadopoulos
and Edwards, 2001; Shrestha and Solomatine, 2006b). How-
ever, it is our opinion that the reliability of such confidence
intervals has rarely been investigated.

The recent development of bayesian neural networks (e.g.
Mackay, 1992; Neal, 1996) and their successful applica-
tion in probabilistic hydrological forecasting (e.g.Khan and
Coulibaly, 2006; Kingston et al., 2005) suggest that they are
the most appropriate tools to achieve reliable ensemble and
probabilistic hydrological forecasting with neural networks.
Nevertheless, MLPs remain very popular among hydrolo-
gists for their simplicity of implementation and because they
produce very accurate forecasts for a wide range of situa-
tions. Therefore, it can be interesting to have a closer look
at an ensemble of MLPs, as it evolves during training, and to
assess the reliability of the probabilistic distribution they col-
lectively form. Besides bayesian networks, there exist some
other experiments regarding probabilistic-type forecasts with
neural networks, such as the work byCarney et al.(2005), in
which they use ensembles of Mixture Density networks to
issue probabilistic surf height forecasts.

Here we propose an experiment where we follow an en-
semble of MLPs during their training process, in a one-day-
ahead streamflow forecasting situation. As the MLP ensem-
ble evolves, we will investigate their probabilistic perfor-
mance and compare it to the deterministic performance of
a single predictor formed by averaging the individual neu-
ral network outputs. We will also pay close attention to the
reliability of the confidence intervals computed from the en-
sembles. Because MLP ensembles resemble ensembles is-
sued by an operational hydrological forecasting system, we
will resort to typical ensemble-based performance assess-
ment tools.

The remaining of the paper is divided as follows: the
context of application is described in the next section, with
a short description of the watersheds and corresponding
databases. The subsequent section presents the protocol of

experiment, including the neural networks architecture, the
ensemble construction methodology and the criteria used for
performance evaluation. Results are presented in Sect.4
along with a discussion on the relevant findings of this work.
The paper ends with concluding remarks and perspectives at
Sect.5.

2 Context of application

2.1 The Leaf, Serein and Le Golo watersheds

The investigation described in this paper relies on databases
for three watersheds with a residence time of the order of
three days, representing different hydrological behaviours.
A summary of the information related to them is provided
in Table1, while hydrographs are drawn in Fig.1.

The Le Golo River is located in Corsica, France. There are
many gauging stations along this river, which is the greatest
of the island. The one with the longest record, located in Vol-
pajola near the basin’s outlet, will be used. This mountainous
basin generates on some occasions relatively high streamflow
in summer, while flow is usually maximal during winter and
spring (Fig.1a). The Serein River (Fig.1b) is an unregulated
tributary of the Yonne River, which joins the Seine River
upstream of Paris. It exhibits a strong seasonal cycle (see
Fig. 1b). Finally, the Leaf River is located near Collins, Mis-
sissippi, USA. Although this watershed also exhibits a sea-
sonal cycle (see Fig.1c), it is not very pronounced.

All data are standardized before being fed to the neural
networks. This procedure ensures that all input data have the
same range of values.

3 Protocol of experiment

3.1 Separation of the databases in subsets

The database for each basin was divided in a training and
a testing datasets using a Kohonen network or self organiz-
ing map (Kohonen, 1990). It is a clustering method which
employs a network formed of two layers (input and output).
The input layer receives the data and the neurons of the out-
put layer, structured to form a map, are the equivalent of
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Fig. 1. Daily mean, maximum and minimum streamflows for the (a) Le Golo (b) Serein and (c) Leaf
Rivers.
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Fig. 1. Daily mean, maximum and minimum streamflows for the
(a) Le Golo (b) Serein and (c) Leaf Rivers.

clusters. The observations are therefore distributed in those
clusters according to their similarities. The number of output
neurons (clusters) must be determined by a calibration pro-
cess. Here we use the same Kohonen network asAnctil and
Lauzon(2004). After testing for many configurations of the
output map, they determined that a 3×3 map was optimal.
Once the nine clusters are identified, two subsets of identical
size are created by randomly selecting daily events within
each cluster. This ensures that the training dataset is statisti-
cally equivalent to the testing dataset, thus avoiding, for ex-
ample, that the training set comprises many large streamflow
events while the testing set contains few. A small experi-
ment was also carried out where the database for each basin
was split in two halves in order to maintain the chronologi-
cal order in the training and rainingesting databases. Various
statistics (mean, standard deviation, minimum and maximum
value, kurtosis and skewness) were computed for those two
datasets as well as for the training and testing datasets used in
the experiment presented in this paper. Although the chrono-
logically ordered datasets did not have enormous disparities
in their statistics, the training and testing datasets obtained
using the self organizing map were even more similar, with
almost identical statistics.

The temporal correlation in the data is preserved even if
the chronological order of the original series is not. All wa-
tersheds used in this study have a response time of about
three days. Because multilayer perceptrons (see Sect.3.2)
do not account for the temporal correlation between the in-
puts and the output, it has to be recreated artificially. To
achieve this, we first use the entire database, with all en-
tries in chronological order, to produce an by 5 matrix,n
being the number of streamflow observations in the whole
database. The fifth column is the observed streamflow. The
first three columns are the observed precipitation values for
the three previous days. The fourth column is the observed
streamflow for the previous day. Then, the Kohonen map-
ping, separation of the database and bootstrap are performed
using the row indices, ensuring that the observed streamflow
is accompanied by the appropriate previous data in chrono-
logical order. Because the response time is limited (three
days), there is no need to provide the network with observa-
tions further in the past.

3.2 Basic neural network architecture

The MLPs used to conduct this study comprise three lay-
ers: the input layer, the hidden layer in which there are five
neurons, and the output layer in which there is only one neu-
ron. The input layer is constituted of the observed streamflow
(Q) at the present timet and the precipitation (P ) at timest ,
t−1 andt−2. The output neuron issuesQt+1, the one-day-
ahead streamflow. The number of hidden neurons and input
selection follows the trial and error process performed in the
work by Anctil and Lauzon(2004) on the same data sets.
Each input vector is connected to each neuron in the hidden
layer and each neuron in the hidden layer is connected to the
output neuron. A weight value (Wi,j or Wj,k), wherei, j

andk represent, respectively, the input number, the neuron
number and the output number is assigned to each of these
links. A bias (bj ) value is also assigned to each neuron of
the hidden and output layers. The weights and biases are the
parameters of the neural model. They are randomly initial-
ized and then an iterative optimization process is performed
until the outputs of the model match the recorded observed
streamflow data. Each iteration is called an “epoch” and the
optimization algorithm is Levenberg-Marquardt Backpropa-
gation (Levenberg, 1944; Marquardt, 1963).

The transfer function for the neurons in the hidden layer is
the sigmoid tangent, given by

C(ξ) =
2

1+e−2ξ
−1, (1)

whereξ represents the weighted sum of input vectors plus
biasbj and is given by

ξj = PtW1,j +Pt−1W2,j +Pt−2W3,j +QtW4,j +bj . (2)

A linear transfer function is used for the output neuron
in accordance with the Universal Approximation Theorem
(Hornik et al., 1989).
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Fig. 2. Variation of the CRPS with the number of neural networks in the ensemble (Le Golo River).
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Fig. 2. Variation of the CRPS with the number of neural networks
in the ensemble (Le Golo River).

The architecture described above is very simple, but pro-
duces unbounded models. They are good interpolators, but
have uncontrolled extrapolation capacities. When predict-
ing streamflow, the absence of a lower limit for the forecast
sometimes causes the network to issue negative values.Cre-
spo et al.(1993) chose to replace those negative forecasts
with zeros. In this study, we chose to replace them by the
smallest archived streamflow observation for each watershed.

3.3 Ensemble construction

An ensemble formed of the outputs of 50 randomly initial-
ized and individually trained MLPs was set up for every
watershed: a strategy that is largely inspired from bagging
(Breiman, 1996), in which each of the 50 forecasted time
series is called a member of the ensemble. Therefore, the
procedure asks for 50 bootstrapped training datasets (Efron
and Tibshirani, 1993), a convenient way of accounting, at
least to some extent, for the uncertainty component linked
to the observations (e.g.Zhang et al., 2009; Ajami et al.,
2007). The produced ensembles thus combine sources of
uncertainty associated to the observations, through the boot-
strap, and sources of uncertainty associated to the model,
through a multi-model approach.

During training, the networks’ parameters are stored for
each epoch in order to be able to apply the partially trained
networks to the testing dataset. The latter is not used at any
moment of the training process, respectingKleměs (1986)
split sample strategy.

The choice of producing 50 members was determined ex-
perimentally. Using the databases at hand, the mean CRPS,
which is explained later at Sect.3.4, was computed for en-
sembles up to 500 members. Even if the mean CRPS does
continue to decrease and stabilizes at about 200, we be-
lieve that fifty members are deemed sufficient to provide an

accurate estimation, as illustrated by Fig.2. Coincidently,
the ECMWF operational meteorological ensemble prediction
system consists of fifty members.

The bootstrap strategy has been confronted with two other
options: producing only 5 or 10 bootstrapped series, which
means that each new series are used to train 10 or 5 networks,
respectively. Results of this test are not reported here because
no clear distinction could be identified in terms of CRPS or
other score values.

3.4 Multicriteria evaluation of performance

In order to assess the performance of the ensemble at
each epoch of the learning process, we used the following
ensemble-specific quality evaluation tools. First, we used nu-
merical criteria, namely the Continuous Ranked Probability
Score (CRPS) and its corresponding decomposition (Hers-
bach, 2000) as well as the logarithmic score (e.g.Good,
1952). We also used graphical quality assessment tools: the
rank histogram (Talagrand et al., 1997; Hamill and Colucci,
1997) and reliability diagram (e.g.Wilks, 1995). Since these
tools are described in great details in references such as
Wilks (1995) andJolliffe and Stephenson(2003), only a short
description is provided hereafter.

We adopt the point of view ofGneiting and Raftery(2007),
according to which a good ensemble forecast maximizes
sharpness, subject to calibration. While sharpness refers to
the precision of the ensemble members, calibration refers to
the statistical consistency between the forecasts and the ob-
servations. An ensemble forecasting system is sharp if all
the members of the ensemble are close to the observed value.
This ensemble forecasting system is also well calibrated (re-
liable) if the dispersion of the ensemble reflects the true un-
certainty of the situation.

In this view, reliability (calibration) precedes precision
(sharpness) in ensemble or probabilistic forecasting since the
final goal is most often expressing the forecast in terms of a
probability or providing the user with a way of assessing the
uncertainty on the next outcome. Therefore, however pre-
cise an ensemble forecast may be, if it is not reliable it is not
useful.

3.4.1 The continuous ranked probability score

Let F(x) be the cumulative distribution function (cdf) fitted
from the ensemble members,x the predicted values at timet ,
xobs the observed value at the same time, and 1 the indicator
function. The CRPS consists in an integral of the difference
between two cumulative distributions. It is defined as

CRPS(F,xobs) =
1

N

N∑
t=1

∫
∞

−∞

(Ft (x)−1{x ≥ xobs,t })
2dx , (3)

whereN is the number of forecast-observation pairs. The
CRPS has to be averaged over many realisations to make up
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for the fact that it is a comparison between a distribution and
a scalar.

Gneiting and Raftery (2007) have formally demonstrated
that the CRPS for probabilistic forecasts is equivalent to the
mean absolute error (MAE) for single forecasts. This result
is based on previous mathematical proofs byBaringhaus and
Franz(2004) and bySźekely and Rizzo(2005). It thus pro-
vides a convenient way to compare the performance of en-
semble forecasts (mean CRPS) with the performance of sin-
gle forecasts (MAE) for the same watershed. Here, the MAE
is calculated using the average of all members of the NN en-
semble as a single forecast.

Like for the MAE, the lower the CRPS, the better it is. The
lower bound is zero for both. However, the CRPS and MAE
values are directly proportional to the absolute value of the
observation.

An interesting characteristic of the CRPS is that it can be
decomposed in two components (Hersbach, 2000).

CRPS= Rel+CRPSPot, (4)

whereRel is the reliability component andCRPSPot is the po-
tential mean CRPS. The former quantifies the extent to which
the spread of the ensemble is really representative of the un-
certainty associated with the forecasting situation, while the
latter is the mean CRPS value that would be attained if the
system was made perfectly reliable. This second component
depends mostly on the data and on the choice of the model
used to issue the forecasts.

This decomposition is based on the empirical cdf of the
ensemble of neural networks. The two components are cal-
culated with Eqs. (5 and6)

Rel=
n∑

k=0

gk(ok −Pk)
2, (5)

CRPSPot=

n∑
k=0

gkok(1−ok), (6)

where Pk =
1
n

is the empirical cdf. The subscriptk =

0,1,...,50 refers to the sorted ensemble members.gk and
ok are calculated using

gk = αk +βk (7)

and

ok =
βk

αk +βk

, (8)

whereαk andβk represent, respectively, the mean difference
(in mm) between two forecasts in the sorted ensembles, for
streamflow values inferior or superior to the observation.

3.4.2 The logarithmic score

The logarithmic score, or ignorance score (e.g.Roulston and
Smith, 2002), is the logarithm of the probability density,
f (xobs), associated with the observed value. Consequently,
a gamma pdf was fitted to the ensemble of neural networks
at every time step for all basins and all epochs using the
maximum likelihood estimation. LetS be the score value,
f (x) the predictive distribution andxobs the observed value.
Therefore, the value taken by the score is:

S(f (x),xobs) = −log(f (xobs)) (9)

We use the logarithmic score in the negative orientation for
reasons of coherence with the MAE and the CRPS. How-
ever, there is no lower bound for this score. In addition,
when the observation falls outside of the predictive distri-
bution, the corresponding probability density is zero. This
produces an infinite value, which affects the calculation of
the mean score. Here, we chose to replace those individual
infinite scores by the next worst non-infinite value.

3.4.3 The rank histogram

The principle behind the rank histogram lies in the fact that
if the ensemble forecasts are well calibrated, the observed
value could be considered as a supplementary member of the
ensemble. The construction of such a histogram is simple
(Talagrand et al., 1997). The observed value at timet is first
added to the corresponding forecasted ensemble and this new
ensemble is sorted. For each forecast-observation pair, the
rank of the observation is stored. Then, those ranks are plot-
ted in a histogram. In the perfect case, this histogram is flat,
so all ranks have equal relative frequency. A “U” shaped
rank histogram indicates that the predictive distribution is
underdispersed, so the observation falls outside the ensem-
ble. Conversely, if the rank histogram has an arched form, it
means that the distribution is overdispersed. If the rank his-
togram is asymmetric, the observation occupies some ranks
more frequently than others. It can point out a bias in the
forecasts.

3.4.4 The reliability diagram

The reliability diagram (e.g.Wilks, 1995), allows another
visual assessment of the reliability of the forecasting sys-
tem. For each ensemble, the limit values of confidence in-
tervals are computed from 10 to 90% coverage by increment
of 10%. The corresponding widths of these intervals are also
computed. For each confidence interval and each forecast,
it is verified whether or not the observed value is located
inside the interval. Then, from the total number of occa-
sions the observation is found to be inside each confidence
interval, the effective coverage of the intervals are evaluated.
The width of the confidence intervals are then plotted against
the corresponding mean effective coverage. A reliable fore-
casting system would show a good correspondence between
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Fig. 3. CRPS, MAE and logarithmic score as a function of the
number of training epochs for (a) Le Golo, (b) Serein, and (c) Leaf
Rivers.

the nominal and effective coverage values, meaning that the
nominal level of confidence of each interval corresponds to
the effective coverage. In addition, for two equally reliable
forecasting systems, this diagram allows the user to choose
the system with the best resolution, that is, the one which
provides the shortest widths for confidence intervals.

Over and under dispersion problems can also be diagnosed
using the reliability diagram. Overdispersion corresponds to
a situation where effective coverage is greater than nominal
coverage of the confidence intervals. Underdispersion corre-
sponds to opposite situation.

4 Results

As explained in Sect.3.4.1, the CRPS reduces to the absolute
error in the case of a deterministic forecast, which allows the
direct comparison of the performance of ensemble and de-
terministic forecasts for the same watershed (e.g.Velázquez
et al., 2009). It is common practice to generate an ensemble
of neural networks and to aggregate their outputs to form a
deterministic forecast. Here, the performance of this deter-
ministic forecast was compared with the performance of the
ensemble (not averaged) forecast. Results are shown in Fig3,
which presents the mean CRPS, MAE and mean logarithmic
score calculated on the testing set. For all basins and every
epoch, the CRPS values are lower than the MAE values. It
indicates that the ensemble of neural networks performs bet-
ter when taken as a whole than when aggregated in a single
averaged predictor.
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Fig. 4. Mean error as a function of the number of training epochs
for ten neural networks (Le Golo River).

As expected, because of random initialization, the first
training epochs offer poor performance (Fig.3). However,
this improves rapidly over the next training epochs, before
reaching a plateau with a small negative slope. This indicates
that at the beginning of the optimization process, all ran-
domly initialized neural networks behave quite differently,
producing an overdispersed ensemble. After only five to ten
iterations, all fifty MLPs mimic better the target data. This
behaviour of the individual networks is also illustrated in
Fig. 4, which shows the mean error as a function of the train-
ing epoch for ten neural networks.

The evolution of the logarithmic score with regard to the
number of training epochs is considerably different from the
behaviour of the CRPS and of the MAE. After an initial de-
crease, the logarithmic score increases with the number of
training epochs performed because, as the accuracy of the
forecasts improves, the corresponding fitted pdf gets nar-
rower, increasing the number of observations falling outside
of the pdf. This is confirmed by Fig.5 in which the occur-
rence of a small number of daily logarithmic scores above
25, 50 and 100 concurs with the increase in the logarithmic
score values. The behaviour of the mean logarithmic score
becomes similar to the behaviour of the mean CRPS when
only 75 or 90% of the sorted daily scores is used for its com-
putation (Fig.5b).

The exercise was repeated for the CRPS and the outcome
is shown in Fig.6. First, Fig.6a shows that the occurrence of
large daily CRPS values (above 0.75, 1 and 2) does not vary
much during training. However, a minimum is noted around
epoch five (for Le Golo River), which corresponds approxi-
mately to the number of epochs where the reliability compo-
nent of the CRPS is minimized (Fig.7) and where the loga-
rithmic score is minimal (see Fig.3). Figure6b shows that
the computation of the mean CRPS, contrarily to the mean
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ordered daily logarithmic scores.
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Fig. 6. Le Golo River: (a) percentage of CRPS above 0.75, 1 and
2 as a function of the number of training epochs; (b) mean CRPS
computed using 100%, 90% and 75% of the ordered daily CRPS.

logarithmic score, does not change much even if it is per-
formed using 75 or 90% of the sorted daily scores. There-
fore, the explanation for the difference of behaviour in the
evolution of the two mean scores drawn in Fig.3 is mainly at-
tributed to the fact that the logarithmic score penalizes more
severely than the CRPS when an observation falls in the ex-
treme of the distributions and to the selected method of re-
placement of infinite logarithmic score values.

Figure7 illustrates the evolution of both components of the
CRPS with the number of training epochs. For Le Golo and
Leaf, both the potential CRPS and the reliability component
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Fig. 7. Evolution of the Reliability and Potential CRPS with the
number of training epochs for (a) Le Golo (b) Serein, and (c) Leaf
Rivers.

sharply decrease in the first steps of the training process.
Then, the reliability components increases a little, indicat-
ing that the ensemble becomesless reliable, before stabi-
lizing for the remaining of the training. The Serein River
shows a similar pattern for the reliability component, but
the potential CRPS initialy increases for the first few train-
ing epochs before decreasing. Generally speaking, the po-
tential CRPS decreases (i.e. improves) as the training of the
networks evolves, which is consistent with the fact that the
MLPs turn into more accurate models.

Figure8 shows the evolution of rank histograms for epoch
1 to 10, 20, and 40 of Le Golo River streamflow forecasts.
Rank histograms for the first few iteration of the optimiza-
tion process are overdispersed. They reflect what is expected
from randomly initialized neural networks. The fifty one-
day-ahead streamflow forecasts are then very different, so
the ensembles exhibit a high variance. Next, as the train-
ing continues, each MLP improves and produces more simi-
lar forecasts. The spread of the probabilistic distributions is
then reduced and the rank histogram flattens (epochs 4 to 7).
However, overrepresentation in the lower ranks of the his-
togram is a probable sign of bias for the testing dataset: the
forecasting system often overestimates streamflow. When
training continues, all MLPs are converging to the same best
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Fig. 8. Rank histograms for epochs 1 to 10, 20 and 40 for the Le Golo River.
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Fig. 8. Rank histograms for epochs 1 to 10, 20 and 40 for the
Le Golo River.

solution. This leads to sharp but underdispersed distribu-
tions, as revealed by an overabundant occurrence of obser-
vations ranked first or last in the histograms above epoch 8.

Reliability diagrams, again for Le Golo basin and for
epochs 1 to 10, 20, and 40, are drawn in Fig.9. The y-
axis is the average effective coverage of the intervals while
the nominal coverage is indicated on the plots for the 0.2,
0,4, 0.6 and 0.8 intervals. Thex-axis is the effective width
of the intervals. The best situation is when the nominal and
effective coverage of the intervals are identical, with the ef-
fective width as short as possible (good resolution). On one
hand, diagrams for epochs 1 to 4 show effective interval cov-
erage that is greater than the nominal coverage for all confi-
dence intervals, corroborating overdispersed NN ensembles.
On the other hand, reliability diagrams for epochs 7 to 10
show the opposite. The most reliable diagrams are obtained
at epoch 5 and 6, when effective and nominal coverages al-
most coincide.

Clearly, this experiment shows that the reliability of confi-
dence intervals, computed from an ensemble of individually
trained MLPs, varies as their training progresses. While the
accuracy of the forecast computed by averaging the networks
forming the ensemble improves with the number of training
epochs, the reliability of the confidence intervals may be op-
timal after only a few training epochs: five to ten for this
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Fig. 9. Reliability diagrams for epochs 1 to 10, 20 and 40 for the
Le Golo River.

experiment. Because this study does not attempt to account
for all possible sources of uncertainty (especially the ones
linked to the choice of the model architecture), it is not real-
istic to aim for perfectly reliable confidence intervals. How-
ever, we suggest that the results of such an experiment could
also be useful to conduct tests on various post-processing
methods (e.g.Wilks and Hamill, 2007). All possible situa-
tions for raw probabilistic or ensemble forecasts are repre-
sented in the results: overdispersion at the beginning of the
training, underdispersion at the end, presence of bias to dif-
ferent extent, and some situations where the distribution is
almost reliable.

5 Conclusions

We have presented an experiment where we trained multiple
repetitions of identical MLPs for a one-day-ahead stream-
flow forecasting purpose on three watersheds. Instead of fo-
cusing on the final performance of the trained networks, we
have investigated the properties of these ensembles during
their training process. More precisely, we have computed
the mean and confidence intervals of the ensembles for each
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epoch of the training process. We have assessed the reliabil-
ity of those intervals and compared the performance of the
ensembles with their average value, comparing the MAE and
the CRPS. We have also applied the mean logarithmic score
and showed that it evolves differently than the mean CRPS as
training is performed. Finally, we have also broken the CRPS
into its potential and reliability components and showed that
its reliability component improves drastically within the first
few training epochs: a characteristic that was corroborated
by the reliability diagrams and by the rank histograms.

During this experiment, we noted that the CRPS was
consistently lower than the MAE, regardless of the number
of training epochs. This suggests that it is altogether more
advantageous to work with the fifty issued forecasts than to
use only their average value. However, because the MLP
ensembles constructed here do not account for all possible
sources of uncertainties in the streamflow forecasting
situation, computed confidence intervals are not reliable,
especially after the networks have been trained for more
than 10 epochs. Nonetheless, considering the simplicity
of implementation of an ensemble of MLPs, especially in
contrast with a standard hydrological ensemble prediction
system that relies on a complex rainfall-runoff model and on
meteorological ensemble forecasts, catchment stakeholders
and managers may consider this option as a first order
mean to compute close to be reliable short-term streamflow
forecasts.

Edited by: E. Toth
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Sźekely, G.J. and Rizzo, M.L.: A New Test for Multivariate Nor-
mality, J. Multivariate Anal., 93, 58–80, 2005.

Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of proba-
bilistic prediction systems., ECMWF Workshop on Predictabil-
ity, Shinfield Park, Reading, Berkshire, 1–25, 1997.

Tokar, A.-S. and Johnson, P.-A.: Rainfall-runoff modeling using ar-
tificial neural networks, J. Hydrol. Eng., 4, 232–239, 1999.
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