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Abstract. A new probabilistic model for daily rainfall,
named MEWP (Multi Exponential Weather Pattern) distri-
bution, has been introduced inGaravaglia et al.(2010). This
model provides estimates of extreme rainfall quantiles using
a mixture of exponential distributions. Each exponential dis-
tribution applies to a specific sub-sample of rainfall obser-
vations, corresponding to one of eight typical atmospheric
circulation patterns that are relevant for France and the sur-
rounding area.

The aim of this paper is to validate the MEWP model by
assessing its reliability and robustness with rainfall data from
France, Spain and Switzerland. Data include 37 long se-
ries for the period 1904–2003, and a regional data set of 478
rain gauges for the period 1954–2005. Two complementary
properties are investigated: (i) the reliability of estimates,
i.e. the agreement between the estimated probabilities of ex-
ceedance and the actual exceedances observed on the dataset;
(ii) the robustness of extreme quantiles and associated con-
fidence intervals, assessed using various sub-samples of the
long data series. New specific criteria are proposed to quan-
tify reliability and robustness. The MEWP model is com-
pared to standard models (seasonalised Generalised Extreme
Value and Generalised Pareto distributions). In order to eval-
uate the suitability of the exponential model used for each
weather pattern (WP), a general case of the MEWP distribu-
tion, using Generalized Pareto distributions for each WP, is
also considered.

Concerning the considered dataset, the exponential hy-
pothesis of asymptotic behaviour of each seasonal and
weather pattern rainfall records, appears to be reasonable.
The results highlight : (i) the interest of WP sub-sampling
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that lead to significant improvement in reliability models
performances; (ii) the low level of robustness of the mod-
els based on at-site estimation of shape parameter; (iii) the
MEWP distribution proved to be robust and reliable, demon-
strating the interest of the proposed approach.

1 Introduction

The distributions of hydrologic variables such as rainfall and
streamflow play a key role in the design of water-related in-
frastructures (i.e. dam spillways or river dikes). The objec-
tive of hydrologic design is to quantify and mitigate the flood
risk arising from high rainfall and streamflow values. The
methods used for the computation of flood risk for extreme
floods can be devised into two families: the deterministic
methods and the probabilistic methods. The deterministic
models approach this issue from a physic point of view and
they are based on the concept of Probable Maximum Flood
(PMF). The PMF can be defined as the flood that may be
expected from the most severe combination of critical me-
teorological and hydrologic conditions that are reasonably
possible in a particular drainage area. On the other hand
the probabilistic methods based on statistic models treat the
problems in terms of probability (or equivalently in terms of
return level) introducing the concept of flood distribution.

Historically in French context the probabilistic method are
preferred to the deterministic ones. More precisely EDF
design floods for dam spillway have been computed using
the Gradex method since 1970 (Guillot and Duband, 1967;
CFGB, 1994). This method is based on the assumptions
that: (i) extreme rainfalls are realizations from an exponen-
tial distribution, and (ii) when the catchment is close to sat-
uration, each increase of rainfalldP induces an equivalent
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increase of dischargedQ. This implies an asymptotic par-
allelism between rainfall and discharge cumulative distribu-
tion functions (cdf) plotted in Gumbel axes. The Gradex
method therefore extrapolates the flood distribution beyond
a return periodTg, using the scale parameter (called the
gradex parameter) of the rainfall distribution. Assumptions
(i) and (ii) may appear too restrictive, as the former under-
estimates the rainfall distribution with an excessive number
of exceedances of 10-year rainfall quantiles (Garçon, 1995),
and the latter overestimates the rate of the discharge cdf near
the return periodTg (asymptotic parallelism considered to
be effective fromTg). So far, EDF has a positive feedback:
there is no significant indication of under-estimation of de-
sign flood on a dataset of 450 hydrologic designs. But there
was a need to assess both the rainfall and discharge haz-
ards in more depth. This is one of the reasons that have
promoted the development of the Schadex method (Paquet
et al., 2006). SCHADEX uses a semi-continuous simula-
tion process for flood frequency estimation. This process is
based on historical observed rainfall and temperature time
series. Major observed rainfall events are replaced by ran-
domly drawn synthetic events, whose probability is issued
from the MEWP (Multi-Exponential Weather Pattern) distri-
bution. The MEWP distribution, is a mixture of exponen-
tial distributions fitted on rainfall sub-samples based on a
weather pattern classification (Garavaglia et al., 2010). These
synthetic events are used as input of a rainfall-runoff model,
which produces simulated streamflow events. This stochas-
tic simulation is looped numerous times to combine almost
exhaustively precipitation and hydrological risks.

The aims of this paper are to validate the MEWP distri-
bution and to compare it with standard probabilistic models
stemming from extreme value theory. To this aim, specific
criteria quantifying the models performance in terms of relia-
bility and robustness are proposed. This assessment is based
on a large dataset of daily rainfall series located in France,
Switzerland and Spain. The paper is organized as follows:
Sect. 2 summarizes the standard sampling techniques used in
hydrological applications and details the probabilistic mod-
els used in this paper. The rainfall data set is presented in
Sect. 3, and 4 describes the criteria used to evaluate the re-
liability and robustness of the different probabilistic models.
Results of the comparison are presented in Sect. 5, before
drawing some conclusions and discussing potential improve-
ments in Sect. 6.

2 Sampling techniques and probabilistic models
for extreme values

This section describes the standard sampling techniques used
in extreme value analysis and two additional sampling tech-
niques (seasonal and weather pattern sub-sampling) com-
monly used in hydrological applications. It also describes

the probabilistic models, the method used to estimate model
parameters, and the computation of confidence intervals.

2.1 Standard sampling techniques

Two standard sampling techniques are used to build samples
of extreme values:

– Block Maximum (BM) . The maximum values within
blocks of equal length are selected. The choice of block
size is important as too small blocks can lead to bias
and too large blocks generate too few block maxima,
thus yielding a large estimation variance (Coles, 2001).
Usually a one-year block is used for daily discharges
or rainfall data, yielding annual maxima (AM) series.
Asymptotic considerations suggest that the distribution
of AM can be approximated by a generalized extreme
value (GEV) distribution (Coles et al., 2003).

– Peaks over threshold (POT). All events exceeding a
given threshold are selected (seeLang et al., 1999; Ros-
bjerg and Madsen, 2004, for a review). According to
Coles(2001), such a sample may be considered as inde-
pendent realizations of a random variable whose distri-
bution can asymptotically (i.e., for high thresholds) be
approximated by a generalized Pareto (GP) distribution.

According toColes et al.(2003), if daily series are available,
POT sampling may be more efficient than AM sampling, be-
cause additional information on several large events occur-
ring during the same year is taken into account.

2.2 Seasonal and weather patterns sampling techniques

Seasonal sampling is widely used in hydrological applica-
tions (Leonard et al., 2008) and overall considered as essen-
tial in precipitation analysis. This kind of stratification is
often performed to produce more homogeneous sub-samples
than the whole population (Lang et al., 1994; Djerboua and
Lang, 2007). Several studies have shown that in the Mediter-
ranean area of Europe (French, Spanish and Italian regions)
extreme rainfall events are mainly observed between the end
of summer and autumn (Zveryaev, 2004; Müller et al., 2009;
Karagiannidis et al., 2009). Consequently, we will define
a “Season-at-Risk” period as the three consecutive months
with highest monthly rainfall maxima. All the presented
study will be carried out on this “Season-at-Risk”. The defi-
nition of this seasonal sampling will be presented in the fol-
lowing section.

A number of authors have shown (e.g.Bardossy et al.,
1995; Trigo and DaCamara, 2000; Linderson, 2001) that
within the same season, the rainfall hazard in a specific area
strongly depends on the atmospheric situation. The relation-
ship between large-scale atmospheric circulation and pre-
cipitation events has been extensively studied (seeYarnal,
2001; Boé and Terray, 2008; Martinez et al., 2008). It has
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Table 1. Cumulative distribution functions and related sampling method. Labelx is used for maxima sampling,y for POT sampling, andz
for POT and WP sampling.

Distribution function Sampling
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[
−exp

{
−

(
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)}]
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−
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(
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z
λi

]−1/ξi
)

·pi

been demonstrated that the analysis of the synoptic situa-
tion can provide significant information on heavy rainfall
events (Littmann, 2000). Consequently, the rainfall proba-
bilistic model of the SCHADEX method (Paquet et al., 2006)
is based on this type of clustering. A specific Weather Pattern
(WP) classification was developed (Garavaglia et al., 2010).
It classifies each day into one of eight contrasted synoptic sit-
uations for France and surrounding areas, without seasonal
distinction.

2.3 Probabilistic models

Table1 describes the six probabilistic models considered in
this study. The MEWP distribution is a particular case of the
Multi Generalized Pareto Weather Patterns (MGPWP) dis-
tribution. Both probabilistic models are introduced byGar-
avaglia et al.(2010). They are based on the same concept: the
seasonal rainfall records are split into several sub-samples
corresponding to each WP. For the MEWP, an exponential
distribution is fitted on a POT sampling of each WP sub-
sample. For the MGPWP, a GP distribution is used. The
seasonal distribution is then defined as the composition, for
a given season, of all WP sub-sample marginal distributions,
weighted by the relative occurrence of each WP. A compre-
hensive discussion on the threshold selection can be found in
Garavaglia et al.(2010). Those mixture distributions will be
compared to four standard models: the Gumbel (GUM) and
the GEV distributions for AM samples, and the Exponential
(EXP) and the GP distributions for POT samples.

The parameters of the six probabilistic models are esti-
mated using the maximum likelihood method. The com-
pound models (MEWP and MGPWP distributions) have
more parameters than the standard probabilistic models. The
MEWP and the MGPWP distributions have respectively 8
(one scale parameter for each WP) and 16 fitted parameters
(one scale and one shape parameter for each WP). One of
the goals of the comparison carried out in this paper is to
assess the potential over-parameterisation of these models.

Note that the weightspi (see Table1), equal to the frequency
of each WP within a given season are directly computed from
the daily time series of WP. They may or not be considered as
parameters of the MEWP and MGPWP models: our choice
is not to call them parameters because they are computed
rather than fitted. Anyway, as the number of parameters is
not explicitly accounted in the computed criteria, this does
not affect the presented results.

Confidence intervals are computed using the non-
parametric bootstrap technique (Efron, 1979). Random sam-
pling with replacement from the initial sample produces new
Bootstrap samples with the same length as the initial sam-
ple. For allB bootstrap samples, the p-quantileqp is com-
puted with each probabilistic model, yielding a sample of

B quantile estimates
(
q(i)

p

)
i=1...B

. The confidence inter-

val at (1−α) level is then equal to
[
qp,α/2,qp,1−α/2

]
, where

qp,α/2,qp,1−α/2 are the empirical quantiles at valuesα/2 and

1−α/2 computed from
(
q

(i)
p

)
i=1...B

.

3 Precipitation and their preprocessing

The validation of the rainfall mixture distribution model is
based on an extensive dataset composed of two daily rainfall
archives:

– Dense dataset:data from 1502 rain gauges belonging
to EDF, the French meteorological office Mét́eo-France,
the Swiss meteorological office Ḿet́eo-Swiss and the
Spanish meteorological office Instituto Nacional de Me-
teoroloǵıa (INM) for the period 1953–2005. These sta-
tions are located in the Alps, Pyrenees and Massif Cen-
tral at an average altitude of 622 m.

– Long dataset:308 long series from Ḿet́eo-France cov-
ering the period 1904–2003. These stations are mainly
located in the plain at an average altitude of 305 m.
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Table 2. Characteristics of the rainfall data sets.

Selected Period Years of record
Number of rain gauges

Network
Total Selected

Dense
dataset

1953–2005 53

603 209 EDF-DTG
555 193 Ḿet́eo France
213 65 Ḿet́eo Swiss
131 11 INM

Long
dataset

1904–2003 100 308 37
Mét́eo France

SQR

Fig. 1. (a) Rain gauges location.(b) Regional classification as a function of the “Season-at-risk”, i.e. the three consecutive months that
maximize the sum of the monthly rainfall maxima.

Both original datasets were first subject to a quality-check
analysis, thus reducing the number of stations available for
the model comparison. Only series with less than 10% of
missing values per year were considered. Moreover, these
series were further analysed to detect several anomalies: time
shifts due to sensor replacement or station relocation, step
changes or trends in rainfall intensity series.

The step change anomalies were studied by testing the
stability over time of the residual of a multiple linear re-
gression linking observations of the studied rain gauge with
observations at the neighbouring rain gauges (Peterson and
Easterling, 1994; Gottardi, 2009). Two statistics were com-
bined in this test, based on the Alexandersson homogeneity
test (Alexandersson, 1986) and of the sum of residuals with
associated confidence intervals (Bois, 1976). Various tests
are available for trend detection. In this study, we chose
distribution-free tests because they do not require hypothe-
ses on the data distribution (Hamed, 2009). According to
Lang et al.(2006), two tests are commonly used to detect
trends in non auto-correlated data series with unknown distri-
bution: the Mann-Kendall test (Mann, 1945; Kendall, 1975)
and Spearman’s rho test (Lehmann, 1975; Sneyers, 1990).

The Mann-Kendall test was selected since it is as powerful as
Spearman’s rho test (Yue et al., 2002). 478 rain gauges from
the dense dataset and 37 rain gauges from the long dataset
were selected (Table2) using this pre-processing. For both
datasets, the most severe test has been the criterion on the
percentage of missing value. For instance, concerning the
long dataset, only 44 stations over 308 ( 14%) were selected.
Among these remaining series, the trends detection led to
discard 7 more stations. Figure1a shows the location of the
selected stations from the two datasets.

For these datasets, the highest rainfalls occur at the end
of the summer and during the autumn (from August to
November). The “Season-at-risk” (Sect. 2.2) is computed
for each rain gauge accordingly. The whole dataset (Long
and Dense datasets) is divided into two datasets depending
on the “Season-at-risk”: the regional dataset A (“Season-
at-risk” from August to October) and the regional dataset
B (“Season-at-risk” from September to November). Such
a regional subdivision reveals a coherent spatial pattern, as
shown in Fig.1b. Figure2a and 2c show the box plots of
monthly rainfall maxima of regional datasets A and B. As
expected, the highest quantiles are reached between August
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Fig. 2. Box plot of the three consecutive monthly rainfall maxima of regional dataset A(a) and regional dataset B(c). Empirical distribution
of rainfall quantile estimates associated with 10- and 50-year return periods for regional dataset A(b) and regional dataset B(d).

and October (regional dataset A) or between September and
November (regional dataset B). Figure2b and d show that
the two regional data sets cover a large variability of rainfall
intensities, from 40 to 170 mm (resp. 40 to 290 mm) for the
empirical daily 10-year rainfall for dataset A (resp. B) and
from 50 to 220 mm (resp. 70 to 520 mm) for the empirical
daily 50-year rainfall for the dataset A (resp. B).

4 Comparison of probabilistic models

This section describes the strategy used to compare the prob-
abilistic models, and defines several criteria to quantify the
reliability and robustness of each model. Several statistical
tests are reported in the literature to measure the goodness of
fit: Pearson’s chi-square test (Plackett, 1983), Kolmogorov
– Smirnov test (Kolmogorov, 1941; Smirnov, 1944), Ander-
son – Darling Test (Anderson and Darling, 1952), Cramer-
von-Mises criterion (Cramer, 1928; Darling, 1957), Shapiro-
Wilk test (Shapiro and Wilk, 1965) and test of Lilliefors

(Lilliefors, 1967). These standard tests are not perfectly
suited for extreme value distributions, mainly because they
are not enough sensitive to deviations in the tails of the dis-
tribution. In order to take into account these limitations,
several transformations of standard tests have been pro-
posed (e.g.Khamis, 1997; Liao and Shimokawa, 1999; Laio,
2004). Applications of the Akaike information criterion
(AIC) (Akaike, 1974) and on the Bayesian information crite-
rion (BIC) (Schwarz, 1978) are also often found in the liter-
ature (e.g.Nach́azel, 1993; Di Baldassarre et al., 2009; Laio
et al., 2009). In contrast with the list of standard tests given
above, the AIC and BIC criteria introduce a penalty term for
the number of parameters.Laio et al.(2009) evaluated their
capability to identify the correct parent distribution from the
available data and showed that these criteria perform well
if the parent distribution is a two-parameter distribution. In
contrast, they are less efficient in the case of three-parameters
distribution.
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This paper does not solely focus on goodness of fit, and
instead attempts to evaluate the predictive performance of
a model using independent validation data (i.e. not used to
calibrate the model). Moreover, focus is on the tail of the
distribution, i.e. the performance of the model in estimating
the exceedance probability of large values. It is argued that
the evaluation of goodness-of-fit is not sufficient to assess
the ability of a model to predict the exceedance probability
of future (unobserved) values. Consequently, we propose an
alternative approach based on specific criteria computed on
an extensive dataset.

A probabilistic model of extreme rainfall should be both
reliable and robust. A reliable model assigns the “correct”
exceedance probability to high values. In practice, this prop-
erty can only be evaluated with respect to observed data.
Consequently, it is useful to consider both long series and
dense data sets in order to increase the sample of observed
extreme values. On the other hand, a robust probabilistic
model yields similar estimates when a slight perturbation of
data is introduced. This property is very important, espe-
cially in the extrapolation of extreme quantiles, in order to
avoid an estimate being overly sensitive to sampling variabil-
ity. Robustness is easier to quantify than reliability but an
analysis solely based on the former is not sufficient because
robustness does not give any information about the ability of
the model to describe or predict observations. In the absence
of reliability diagnostics, a robust model is not necessarily
preferable: a model can be robust but totally unreliable. In
conclusion these properties are complementary: the reliabil-
ity of the model should be evaluated first, and in a second
step, the most robust model (amongst reliable ones) should
be preferred. Specific criteria quantifying reliability and ro-
bustness are proposed in the following sections.

4.1 Reliability criteria

As mentioned above, measuring the reliability of probabilis-
tic estimations of high quantiles is not an easy task. We take
cues from methods developed in the context of skill assess-
ment of probabilistic forecasts, in particular, the reliability
diagram (also called attribute diagram) (Wilks, 1995). This
tool is used to assess the consistency of a probabilistic fore-
cast of binary events. It plots the observed frequency against
the forecast probability in order to evaluate their agreement.
This diagram is widely used in forecasts analysis and com-
parisons (e.g. seeBartholmes et al., 2009, for an application).

Similarly, we propose a specific procedure to evaluate
the agreement between the exceedance probabilities of ex-
treme events provided by a probabilistic model and their ob-
served frequencies. This tool, namedFF criterion, is based
on a split-sample procedure and was introduced byGarçon
(1995). Let D be a regional data set ofL stations of length
N , Di is the time series at sitei. The computation of theFF
criterion can be divided into the following steps:

1. Each Di is split into two successive sub-samples of

equal lengthN/2:
(
xi

1,...,x
i
N/2

)
and

(
xi

N/2+1,...,x
i
N

)
.

2. Two cdf F i
1(x) and F i

2(x) of the same probabilistic
model are fitted using each sub-sample.

3. Let mi
1 = max

{
xi

1,...,x
i
N/2

}
and mi

2 =

max
{
xi

N/2+1,...,x
i
N

}
. Under the hypothesis of i.i.d.

random variables the probability of non-exceedance
of mi

1 (resp. mi
2) is computed with the cdf fitted to

the second partF i
2(x) (resp. the first partF i

1(x)) as
follows:

FF i
1 = Pr

(
Mi ≤ mi

1

)
=

[
F i

2

(
mi

1

)]N/2
(1a)

FF i
2 = Pr

(
Mi ≤ mi

2

)
=

[
F i

1

(
mi

2

)]N/2
(1b)

2L values of probabilitiesFF are therefore computed. With
a perfect probabilistic model, the distribution ofFF values
should be a Kumaraswamy’s double bounded distribution of
parametersN and 1; i.e.K[N,1] (Kumaraswamy, 1980); see
Appendix A. A pp-plot is used to check this feature: the
closer theFF distribution to the 1:1 diagonal, the more re-
liable the probabilistic model.

In practice, the theoretical distributionsF i
1(x) andF i

2(x)

are replaced by their estimates based on samples of limited
size, thus leading to departures from the 1:1 line. To quan-
tify this, FF is calculated on 1000 random datasets of three
different sample sizes, generated from an exponential pop-
ulation. The size of the first sample is similar to that of
the actual rainfall dataset (L = 552, N = 50), the second is
smaller (L = 552,N = 10) and the third is bigger (L = 552,
N = 1000). Figure3 shows the median of the simulatedFF
distributions for each dataset size. It appears that logically,
theFF distribution plot moves closer to the 1:1 diagonal (the-
oretical result) when the sample size increases. Because of
the bias introduced by the limited sample size, the analysis
of the reliability test is mainly qualitative and provides a way
to compare concurrent probabilistic models.

TheFF procedure is used to assess the ability of a proba-
bilistic model to assign the “correct” probability to the high-
est observed values that were not used for model fitting. With
analogy with the split sample test, this kind of procedure can
be namedFF validation procedure. Note that theFF proce-
dure solely focuses on the maximum observed value during
the validation period: it is therefore primarily geared toward
the assessment of reliability in the tail of the distribution.

A modification of theFF validation procedure can be in-
troduced in order to assess reliability based on the calibra-
tion sub-sample. Instead of computing the non-exceedance
probability of the maximum of the first sub-sample with the
cdf estimated on the second sub-sample, the cdf fitted on the
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Fig. 3. FF distribution provided by simulation with random sam-
ples extracted from an exponential distribution. Different curves
represent three kinds of simulations with samples of different sizes.

same sub-sample can be used:(
FF i

1

)∗

= Pr
(
Mi ≤ mi

1

)
=

[
F i

1

(
mi

1

)]N/2
(2a)(

FF i
2

)∗

= Pr
(
Mi ≤ mi

2

)
=

[
F i

2

(
mi

2

)]N/2
(2b)

This approach can be interesting in cases where the ob-
served distribution ofFF∗ values is less variable than the the-
oreticalK[N,1] distribution. Indeed, the latter distribution
corresponds to what should be observed using the true distri-
bution of data: it corresponds to a lower bound for the vari-
ability of FF∗ values, solely resulting from sampling vari-
ability. Consequently, a probabilistic model yieldingFF∗

values less variable than the theoreticalK[N,1] distribution
tends to “over-fit” extreme values, which is typical of over-
parameterized models. With analogy to theFF validation
procedure, this second approach can be named theFF cali-
bration procedure.

In order to improve the comparison a robustness assess-
ment is presented into the following paragraph.

4.2 Robustness criteria

The robustness is the ability of a method to yield close esti-
mations when two different calibration periods are utilised.
Robustness is quantified using several sub-samples of the
whole long data series, in order to increase the reliability of
the assessment. To analyse the results and compare the mod-
els, two scores are computed: the SPANT criterion and the
COVERT criterion.

The SPANT criterion aims to evaluate the variability of
extreme quantile estimation. This criterion can be defined as
follows:

SPANT =
max

{
q̂T ,n=1,...,m

}
−min

{
q̂T ,n=1,...,m

}
1
m

∑m
n=1q̂T,n

(3)

whereq̂T,n is the model estimate for the return periodT and
the sub-periodn amongstm non-overlapping sub-periods.
The value of this score is greater or equal to 0, zero being the
ideal score, occurring for a probabilistic model that is com-
pletely unaffected by the sub-period used for calibration.

Moreover, it is reasonable to assert that a probabilistic
model is more robust if the confidence intervals calculated
for different sub-periods overlap well. Note that we are in-
terested here in confidence interval overlap and not in their
width. Indeed, for a given model and return period, two
bootstrap confidence intervals (computed from two different
sub-samples) could be narrow but totally disconnected. Such
behavior is not in line with the robustness requirement. To
quantify this property, a second criterion, named COVERT is
derived. The analytical expression of this score is as follows:

COVERT

=

∏m
n=1Pr

(
max

{
q̂T ,α/2,n=1,...,m

}
≤ q̂T,n ≤ min

{
q̂T ,1−α/2,n=1,...,m

})
(1−α)m

=

∏m
n=1Pr

(
a ≤ q̂T,n ≤ b

)
(1−α)m (4)

where q̂T,α,n is the model estimate for the return levelT

with a confidence levelα and computed on the sub-period
n (amongstm non overlapping sub-periods). This is the nor-
malized product of the probability densities of theq̂T quan-
tile within the a − b interval, wherea is the highest value
of the lower limit of the confidence intervals andb is the
lowest value of the upper limit of the confidence intervals.
This score therefore provides a quantitative value of the con-
fidence interval overlap for each sub-period. The graphical
explanation of the COVERT criterion is shown in Fig.4 for
two sub-periods. This figure highlights that the optimum of
the criterion is 1 (confidence intervals are identical), and the
minimum value is 0 (confidence intervals are disconnected).

4.3 Comparaison methodology

In this paragraph the comparison methodology (in terms of
reliability and robustness) is detailed. The datasets are di-
vided into 25-years sub-periods: two sub-periods of 25 years
for the dense dataset and four sub-periods of 25 years for the
long dataset. The division diagram is shown in Fig.5. Ac-
cording to the same division scheme (Fig.5) theFF valida-
tion and calibration procedures are computed using the dif-
ferent probabilistic models. In regards to the long dataset we
have considered the couples 1st–2nd period (1904–1928 and
1929–1953) and 3th–4th period (1954–1978 and 1979–2003).
Furthermore in order to quantify the robustness, the prob-
abilistic models were calibrated on all sub-periods (N = 25
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Fig. 4. Schematic confidence intervals overlap criteria: COVERT. X is the model estimate computed on the sub-period 1 with confidence
interval[x−

;x+
] andY is the model estimate computed on the sub-period 2 with confidence interval[y−

;y+
]. a is the highest value of the

lower limit of confidence intervals andb is the lowest value of the upper limit of the confidence intervals. Three cases are shown: COVERT
equal to 0 (null overlap), 0.5 (half overlap) and 1 (total overlap).

Fig. 5. Sub-period division of the two datasets.

years;L = 478+2·37= 552 stations). SPANT and COVERT
criteria are computed for each station and for different return
levels.

Alternative division schemes, yielding sub-periods with
different length and/or random sub-periods (i.e. containing
non-consecutive years) were also tested in order to check that
the results were not influenced by climatic effects or by the
relative length of calibration/validation periods. The divi-
sion scheme presented in Fig.5 and these alternative divi-
sion schemes led to similar results, so for a practical reason
the latter results are not presented.

5 Results

This section presents the results of the model comparison.
The GUM (resp. GEV) distribution performs closely to the
EXP distribution (resp. GP) so for clarity’s sake the scores
of GUM and GEV distributions appear only in the tables and
not in the figures of this section.

5.1 Reliability

Starting with the reliability criteria, theFF calibration and
validation criteria are calculated for the six models using
the whole dataset. The results of these tests are presented
through the pp-plot between the empirical and theoretical
frequencies of theFF values (Fig.6). According to these
results the MGPWP performs as well as MEWP distribution

in validation but is the worst model in calibration. In par-
ticular, the shape of the MGPWP pp-plot in calibration sug-
gests that the observedFF values are less variable than the-
oretically expected. As indicated in Sect. 4.1, this is typical
of over-parameterised models. Fitting the shape parameter
on each WP sub-sample, the MGPWP distribution tends to
over-fit extreme values. However, and perhaps surprisingly,
this does not result in a loss of predictive performance in val-
idation. Overall, and based on both criteria (FF calibration
and validation criteria) the MEWP distribution is the most
reliable model given that its distribution is the closest to the
1:1 diagonal.

Compared to MEWP and MGPWP distributions, the EXP
and GP distributions have a distinctly lower predictive per-
formance in validation (Fig.6, right panel): this highlights
the value of weather-pattern sub-sampling in estimating ex-
treme quantiles. Moreover, the EXP distribution performs
better than the GP distribution, which may appear surprising.
Nevertheless this result is due to high variability of estimated
shape parameterξ for the GP distribution. This parameter is
sometimes negative, corresponding to an upper-bounded dis-
tribution. In such case, theFF validation criterion is equal
to 1 if the maximum observed value in the validation period
is greater than the upper bound (corresponding to an ”im-
possible” observation according to the model). In the whole
dataset and in all sub-periods (1104 stations· periods) 632
negative shape parameter were estimated (∼ 57%), yielding
∼ 9% of FF values equal to 1. These results highlight the
limits of fitting the shape parameter using a few years of at-
site data. On the contrary in the case of MGPWP distribution
only 43 (∼ 4%) negative shape parameter were estimated for
the WP-at-risk (i.e. the WP associated to the highest scale pa-
rameter), yielding less then∼ 1% ofFF values equal to one.
These results show the interest of fitting the shape parameter
on WP sample and not on the global population. This will be
further discussed in Sect. 6.
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Fig. 6. pp-plot ofFF scores in calibration and validation. Whole dataset is used to computed these distributions.

Table 3. Results of the reliability procedure for the six probabilistic models.

1
1−f (FF)

f(FF)

A value
exceeded one
time over 10
according to:

Simulation EXP

is observed one
time over

7 0.850
(M=552, N=50)

GUM 5 0.784
GEV 4 0.744
EXP 5 0.780
GPD 4 0.734

MEWP 7 0.866
MGPWP 8 0.869

A value
exceeded one
time over 20
according to:

Simulation EXP

is observed one
time over

11 0.909
(M=552, N=50)

GUM 7 0.860
GEV 5 0.793
EXP 7 0.864
GPD 5 0.783

MEWP 11 0.913
MGPWP 15 0.931

A value
exceeded one
time over 100
according to:

Simulation EXP

is observed one
time over

38 0.974
(M=552, N=50)

GUM 16 0.938
GEV 7 0.847
EXP 17 0.941
GPD 7 0.848

MEWP 34 0.970
MGPWP 32 0.969

Particular attention has to be paid to the highest frequency
in the presented pp-plot. In this regard, theFF validation pro-
cedure may be expressed for high quantiles as follows. For
example, with the EXP distribution the empirical cumulative
frequency of the 0.95 quantile ofFFEXP is 0.86 (Fig.7). This
means that a value supposed to occur one time out of 20, ac-

cording to the EXP distribution (FFEXP = 0.95), has been
observed about one time out of 7 (empirical cumulative fre-
quency of 0.86). This kind of analysis has been done for each
model (including the simulation using an exponential distri-
bution presented in Sect. 4.1) and for different frequencies
(0.9, 0.95 and 0.99). Table3 illustrates the results of this
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Fig. 7. Close-up of the upper tail of theFF validation procedure.
The gray circles highlight the values shown in Table3. Whole
dataset is used to computed these distributions.

analysis. It shows that the MEWP and MGPWP distributions
are less biased than the other distributions, with observed val-
ues (resp. 7, 11 and 34 for the MEWP distribution and 8, 15,
32 for the MGPWP distribution) closer to both the theoret-
ical values (resp. 10, 20 and 100) and the simulated values
(resp. 7, 11 and 38) including the sampling effect (Fig.3).

5.2 Robustness

Figure 8 shows the empirical distributions of the two ro-
bustness criteria (SPANT and COVERT) computed at the
20-years, 100-years and 1000-years return levels. The GP
and the MGPWP distributions are the most sensitive to
sampling variability, as the SPAN100 and SPAN1000 scores
are markedly larger than with the other distributions. The
SPAN20 remains almost similar for all the considered mod-
els (being MEWP the best one and MGPWP the worst one).
Also in this case such a low level of robustness in these two
models is due to high variations of the shape parameterξ in
different sub-periods. Furthermore the MGPWP distribution
drifts further away from the ideal SPANT than GP distribu-
tions, especially for 1000-years return level. The other prob-
abilistic models (EXP and MEWP distributions) yield similar
and better SPAN100 and SPAN1000 scores.

In order to complete the robustness comparison, it is im-
portant to pay attention to the confidence interval overlap.
The MEWP and the MGPWP distribution have the empir-
ical distribution of the COVER20 score closest to the ideal
score. Instead in the case of the empirical distribution of
the COVER100 and COVER1000 scores, the MGPWP distri-

bution performs better than the other ones. The good per-
formance of MGPWP distribution in terms of COVERT cri-
terion is a consequence of the width of its confidence in-
tervals. Indeed, as the confidence intervals are wide, the
probability to observe a good confidence interval overlap is
higher. On the whole dataset, the MGPWP distribution at
100-years return level has in average an interval confidence
width equal to±0.76 of the central estimation. The EXP,
GP and MEWP distributions have respectively interval con-
fidence width equal to±0.17,±0.52 and±0.22 of the cen-
tral estimation. The MEWP distribution yields satisfactory
scores however its confidence interval size is appreciably
moderate. The EXP and GP distributions are slightly less
robust than the two distributions based on WP sub-sampling.
Beside for these two models, the confidence intervals, com-
puted on two different periods, appear totally disconnected
for about 10% of the rain gauges (e.g. COVERT score equal
to 0).

A global robustness assessment may be summarized for
the proposed criteria. Table4 shows the mean SPANT and
COVERT criteria at the 10-years, 20-years, 50-years, 100-
years and 1000-years return levels for the six probabilistic
models considered. According to the results shown in Fig.8
and in Table4, the MEWP distribution provides a good level
of robustness, from moderate to high return levels, either for
the variability of extreme quantile estimation (SPANT crite-
rion) or for confidence interval overlap (COVERT criteria).

6 Discussion and Conclusions

The aim of this paper was to assess a probabilistic model
based on atmospheric circulation pattern by comparing it
with standard probabilistic models derived from extreme
value theory using an extensive data set. A specific method
for the comparison of probabilistic models was introduced.
Firstly, the reliability of the model to estimate extreme rain-
fall quantiles was investigated. Secondly, the comparison
examined the robustness of the extreme quantiles and their
associated Bootstrap confidence intervals, based on various
sub-samples of long data series (about 100 years). The use
of long data series made it possible to compare the proba-
bilistic models on extreme values. Seasonal variability of
precipitation in France and in the surrounding area was taken
into account.

Some interesting conclusions can be drawn. The results
of the comparison clearly highlight the interest of a WP sub-
sampling. In particularly the probabilistic models based on
WP approach provide good predictive performance in vali-
dation (FF validation criterion). This conclusion means to
suggest that the number of parameter, a priori a negative fea-
ture, does not affect the statistical qualities of the proposed
probabilistic models based on WP.

For the GP and MGPWP distributions, the presented re-
sults shows that the shape parameter estimation leads to a
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Fig. 8. Empirical distribution of SPANT and COVERT criteria at 20-years, 100-years and 1000-years return levels. Whole dataset is used to
computed these distributions.

drop in robustness, overall for high (100-years and 1000-
years) return levels. Therefore in operational application a
regional analysis is recommended for robust estimation of
shape parameter (Madsen et al., 1995; Martins et al., 2001;
Ribatet et al., 2007; Pujol et al., 2008).

The purpose of this paper was to assess the MEWP proba-
bilistic model and not to decry the GEV and GPD approach.
As already said their observed low level of robustness is
linked to the local estimation of the model parameters (espe-
cially the shape parameterξ ). Results for the MGPWP dis-
tribution are very contrasted. On the one hand a good level
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Table 4. Mean SPANT and COVERT criteria (the numbers in bold highlight the best performance for each return period).

Score Return period Ideal score GUM GEV EXP GPD MEWP MGPWP
(year)

SPANT

10 0 0.09 0.10 0.09 0.10 0.08 0.10
20 0 0.10 0.12 0.10 0.12 0.09 0.15
50 0 0.11 0.16 0.12 0.16 0.10 0.22

100 0 0.11 0.19 0.12 0.19 0.11 0.31
1000 0 0.12 0.31 0.13 0.32 0.13 0.62

COVERT

10 1 0.58 0.50 0.51 0.48 0.58 0.10
20 1 0.59 0.53 0.53 0.48 0.67 0.66
50 1 0.60 0.58 0.53 0.51 0.68 0.71

100 1 0.60 0.60 0.54 0.53 0.69 0.76
1000 1 0.61 0.64 0.55 0.54 0.70 0.81

of FF validation and COVERT criteria are observed, but on
other hand this model presents a very low level ofFF cali-
bration and SPANT criteria. This aspect strongly reduces its
applicability in operational application for reasons of coher-
ence and repeatability. However we plan to carry out a future
investigation on the use of a GP distribution for the most se-
vere WP, with a regional assessment of the shape parameter.

In conclusion for daily data, the MEWP distribution
presents a good level of reliability and robustness with re-
spect to the proposed criteria. These conclusions may be dif-
ferent with sub-daily data. It would be interesting to carry
out the same kind of study based on hourly time-series even
if data availability would then be an issue especially for the
robustness of the results.

In the proposed comparison technique the spatial depen-
dence between samples maxima was not taken into account.
The spatial dependence could influence the results of theFF
procedure, with a similar effect than the sampling effect pre-
sented in Fig.3. However, the spatial dependence should not
change the global results for a comparison purpose since all
models are applied to the same data, affected by the same
spatial dependence. Also we plan to carry out a future in-
vestigation on spatial distribution of computed scores and on
correlation analyses between model performance and clima-
tological features. The question of assessing the reliability
(in addition to the robustness) of estimated uncertainties is
also of interest. In our study the maximum likelihood method
was used to fit models parameters. The uncertainties were
not taken into account in the estimation of models parameters
and so it could be potentially interesting to check if taking
into account uncertainties (i.e. use a predictive distribution as
models estimation, seeGelman et al., 1995) could improve
reliability and robustness of models. Such developments are
currently investigated within the French National research
project named ExtraFlo 2009-2012 (EXTreme RAinfall and
FLOod estimation: design values for extreme rainfall and
floods.https://extraflo.cemagref.fr).

Appendix A

Reliability criterion FF

Let:

– D a regional dataset ofM stations;

– Di the time series at sitei;

– N i the length of theDi time series;

– mi the observed maximum ofDi ;

– F̂ i the probabilistic model fitted onDi .

The FF score at site i can be defined as follow:
FFi

= F̂ i
(
mi

)
If the estimation is perfectly reliable

(
F̂ i

= F i
)
, thenFFi

∼

K
[
N i,1

]
(Kumaraswamy’s double bounded distribution,

Kumaraswamy, 1980), i.e. its cdf is Pr
(
FFi

≤ t
)

= tN
i

where 0≤ t ≤ 1.
Proof:
Pr

(
FFi

≤ t
)
= Pr

(
F̂ i

(
mi

)
≤ t

)
.

If F̂ i
= F i :

Pr
(
FFi

≤ t
)

= Pr

(
mi

≤

{
F i

}−1
(t)

)
= Pr

(
Di

k ≤

{
F i

}−1
(t)∀k = 1,...,N i

)
=

[
F

({
F i

}−1
(t)

)]N i

= tN
i
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