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Abstract

The synthetic generation of random fields with specified probability distribution, correlation structure and probability of no-rain
areas is used as the basis for the formulation of a stochastic space-time rainfall model conditional on rain gauge observations. A new
procedure for conditioning while preserving intermittence is developed to provide constraints to Monte Carlo realisations of possible
rainfall scenarios. The method addresses the properties of the convolution operator involved in generating random field realisations
and is actually independent of the numerical algorithm used for unconditional simulation. It requires only the solution of a linear
system of algebraic equations the order of which is given by the number of the conditioning nodes. Applications of the methodology
are expected in rainfall field reconstruction from sparse rain gauge data and in rainfall downscaling from the large scale information
that may be provided by remote sensing devices or numerical weather prediction models.
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Introduction

Although investigated by the hydrological and meteoro-
logical communities for about two decades, the problem of
developing a suitable mathematical representation of the
space-time variability of rainfall over a variety of scales of
technical interest is still a challenge. Nearly ten years ago,
Cho and Chan (1987) argued that, due to the complexity of
the involved physical processes and to the lack of knowledge
about many of the basic phenomena, the numerous attempts
to build precipitation models able to provide reliable
predictions had limited success. With respect to many of
the scales of interest in the usual hydrological applications,
the statement is still valid today, even if advances have been
experienced in the understanding of the statistical charac-
teristics of precipitation (Waymire and Gupta, 1981a,b,c;
Zawadski, 1987; Gupta and Waymire, 1987) and on the
coupling of the evidence of a hierarchical organisation of
different structures at different scales — which is typical of
the meteorologists’ approach after the Orlanski classification
(Orlanski, 1975) — with the self-similarity features of the
rainfall field emerging from recent investigations (Kumar
and Foufoula-Georgiou, 1993a,b; Lovejoy and Mandelbrot,
1985; Waymire, 1985).

The work presented in this paper originates from the
study of extreme rainfall events which may produce flash
floods and disastrous inundation in the small to medium size
catchments along the highly urbanised coastal areas of the
northern Mediterranean region (Lanza and Siccardi, 1994,

1995). In this case, comparative analyses between the typical
morphological structures of natural drainage systems and
the space-time variability of the precipitation field lead to
the hypothesis that flash floods in areas of complex
orography may be associated with some kind of ‘resonance’
between the scales of the drainage network organisation and
those of the covariance and intermittence structure of
precipitation. The term ‘resonance’ is used here to define
the probability that a given space/time component of the
rainfall field — that is critical for basins of a given scale — will
hit the corresponding geomorphologic component of the
drainage network within the target region, which is assumed
as a condition for the occurrence of floods. Therefore, the
resonance must be interpreted as a key to the understanding
of the relation between the aggregation scales — in space and
time — of the internal variability of the rainfall field, and the
aggregation scale of the runoff processes at basin scale.
This ‘resonance’ of scales is not predictable in a
deterministic sense due to the fact that, though landscape
morphology is well resolved and consequently the organisa-
tion of drainage networks is known in fine detail, the
inherent variability of the precipitation field is still
unresolved but for a range of space-time scales a few orders
of magnitude larger than those requested by the study of
small to medium size basins. At finer scales, the stochastic
approach is the most appropriate, because it allows
quantification and control of the uncertainties that any
physical model would inevitably introduce. The basic idea is
that of generating, directly, Monte Carlo realisations of
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random fields, which preserve specified conditions imposed
on their statistical structure and distribution of no-rain
.areas.

The contribution of the present paper is the development
of a new technique allowing conditional generation of the
rainfall field by constraining the field to be consistent with
the rainfall rates measured at existing rain gauge locations
and preserving the desired distribution of no-rain areas.
The method simply addresses the properties of the
convolution algorithm involved in the synthesis of random
fields. Being independent of the performance of the
numerical generator used for unconditional simulation,
the method occupies very little CPU time, ie. that
requested by solving a linear system of algebraic equations
the order of which is given by the number of the
conditioning nodes. Most of the research effort aimed at
the development of random field numerical generators, able
to preserve the second order characteristics of the observed
data-sets, was fuelled by the need to simulate two- and
three-dimensional spatial realisations of log-transmissivity
fields in natural aquifers, as expressed by the study of
contaminant transport in heterogeneous porous media (e.g.
Bellin ez al., 1992; Delhomme, 1979). The use of the same
code for the stochastic simulation of the space-time
structure of precipitation fields was not addressed to the
same extent, due to the fact that the second-order
description of the rainfall process is unlikely to be sufficient
to explain many features of observed precipitation. How-
ever, performance comparisons with even complex different
models, either of a conceptual (Waymire et al., 1984) or
fractal nature (Lovejoy and Mandelbrot, 1985), indicate
some operational advantages which make direct simulation
models very promising for usual hydrological applications:
the number of parameters they require is very limited and
they show extraordinary reproduction capabilities in the
face of radar rainfall maps.

Stochastic models of space-time rainfall have indeed been
addressed in hydrological applications such as multiple-
sensor network design problems (Krajewski, 1987; Azimi-
Zoonoz et al., 1989; Seo et al., 1990; Krajewski ez al., 1993),
the analysis of rainfall input accuracy effects on the
performances of hydrological models (Krajewski et al,
1991; Wilson ez al., 1979), the study of satellite derived
rainfall estimates (Bell, 1987; Bell ez al., 1990), etc.

The organisation of the paper is as follows. The space-
time model of rainfall used in this paper is dealt with first.
After a definition of the conceptual framework for this
model, its mathematical structure, due to Bell (1987), is
recalled briefly. Examples of two-dimensional realisations of
the rainfall field are presented, which preserve specified
second-order statistics, correlation structure and the
distribution of no-rain areas. The conditional generation
technique is described in the case of one-dimensional
simulations and single-site conditioning. The extension to
higher dimensions and to multiple-site conditioning is a
question of simple algebraic developments and only results
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are presented. In the conclusions, possible applications of
the proposed methodology in different hydrological studies
are discussed and further developments and research
directions are identified.

A model for space-time rainfall

Various stochastic models of space-time rainfall have been
presented in the literature, initially led by the extension of
temporal rainfall models to the two-dimensional case
(Waymire et al., 1984). The implementation of a modified
Turning Band algorithm (see later in this section) was
recently presented by Mellor (1996), Mellor and O’Connell
(1996) and Mellor and Metcalfe (1996). Other examples
may be found in the work of Smith and Karr (1985),
Krajewski and Georgakakos (1985), Bell (1987), Smith and
Krajewski (1987), Rodriguez-Iturbe and Eagleson (1987),
Lebel et al. (1987) and in the review paper by Creutin and
Obled (1982).

The present work takes its cue from the approach of Bell
(1987) who developed a random field generation model
which preserves the main statistical and structural charac-
teristics of the observed rainfall field: a brief description of
this model is presented later. The basic hypothesis is that of
considering the rainfall field as suitably represented by
means of a homogeneous regionalised variable:

/AT/AT ey ddde (1)

where 7(x,y) is the instantaneous rainfall intensity at any
point with co-ordinates (¥,y), A is the support area and AT
the time step of integration.

The model of space-time rainfall presented in this paper
assumes that the rainfall process is statistically homoge-
neous, or stationary. Statistical homogeneity is the physical
counterpart of stationarity and implies that statistical
properties of the underlying random process depend only
on the separation distance and not on the actual location of
the grid nodes.

The random variable under examination presents a
positive probability (say 1 — p) to be zero while it is
continuous — i.e. such that Pr{R =r] = 0 — elsewhere. This
is a mixed distribution which can be described through its
probability density function (Kedem ez al., 1990):

Raar(x4,54) =

h(r) =0 r<0 (2a)
hr)=1-p r=0 ‘ (2b)
hr)=pf(r) r>0 (2¢)

where f(r) is the probability density function of R
conditional on R > 0.

Though a few experimental studies on the statistical
characteristics of observed rainfall fields have been



presented in the literature, using radar data at different
resolution scales, there is no general agreement upon the
nature of f(r). The earlier studies of Neymann and Scott
(1967) suggest the use of a gamma distribution. Lovejoy and
Mandelbrot (1985) argue that the hyperbolic distribution is
well suited to represent the rainfall process and use that
observation to support the fractal hypothesis of the nature of
space-time precipitation. The lognormal distribution was
suggested by Houze and Cheng (1977) and Kedem ez al
(1990) using experimental data and by Kedem and Chiu
(1987) using a theoretical approach which, based on a few
assumptions on the rainfall process, demonstrates that the
spatial process is lognormally distributed.

When f belongs to a family of parametric distributions
with parameter vector 0, the notation f(r) is replaced by f(r,
0) and h(r) by h(r, p, ). Let 0 = (4, ¢°), and

1

1 2
mﬁxp[—ﬁ'(lnr—-u)} r>0

r<0

3)

In this case R has a lognormal mixed distribution with
parameters p, H, %, and we have (Kedem et al., 1990):

ER] =p-exp(u+0/2)

4

VARIR] = p - exp(2u + 0%) [exp(0?) — 1] W
Several techniques for the synthesis of random fields with
specified covariance structure have been proposed in the
literature, based on various numerical algorithms. A detailed
performance comparison (Bellin, 1991) of three of the most
used numerical methods — namely the Turning Band
Method (Mantoglou and Wilson, 1982; Tompson ez al.,
1989; Dietrich, 1995, 1996; Gneiting, 1996), the Matrix
Decomposition Method (Davis, 1987; Fai Ma and Mills,
1987) and the Direct Fourier Transform (DFT) method
(Gutjahr, 1989) — leads to the conclusion that the spectral
method based on DFT provides the best results in terms of
accuracy and computational efficiency.

The synthetic generation of a Gaussian random field with
zero mean and unit variance is addressed here as the basis
for space-time rainfall simulation. The Direct Fourier
Transform method presented by Gutjahr (1989) is used.
The algorithm generates random fields of real variables on a
regular grid by directly performing an inverse Fourier
transform on the randomised discrete spectral representa-
tion of the variable itself. The method uses the theorem of
spectral representation applied to a statistically homoge-
neous random field of spectral density S(%#) which states
that, if V(x) is a statistically homogeneous random field
with zero mean and spectral density S(%), then a unique

A conditional simulation model of intermittent rain fields

complex stochastic process Z(k) exists such that:

V(x) = /_ " explix - B)Z (k) (50)

E[dZ(kF)] =0 Vk (5b)
e O if kh#khk
E[dZ(ky)dZ* (k)] = {S(k)dk ok k (5¢)

where in Eqn. (5a), i = (—1)!/%, k is the wave number or the
angular frequency vector, and 4Z (k) is a complex variable of
the form:

dZ =dZp+1i-dZ; (6)

where the subscripts R and 7 denote the real and imaginary
components, respectively. This theorem allows the repre-
sentation of a correlated structure in the spatial domain, V'(x),
through a non correlated structure, Z(k), in the frequency
domain. The approach is consonant with the Fourier
transform approach given later in this paper. In order to
perform the inverse Fourier transform it is convenient —
following Robin ez al. (1993) — to switch from the angular
frequency k to the spatial frequency # according to:

k=2n-u (7)

to obtain

O(u) = (2m)" - S(k) (8)
and

V(x) = /_oo exp(i - 2mu - x)dZ(u) (9)

o

where ®(x) is the power spectral density function, g is the
number of dimensions and the units of « are cycles per unit
distance.

Equation (9) has the form of a continuous inverse Fourier
transform, which can be evaluated numerically with the
following approximations: (a) the frequency domain is
discretised into a finite number of frequency intervals Au in
each dimension, and (b) the frequency domain must be
truncated at a finite frequency, known as the Nyquist
frequency, at each end of the domain. By writing down the
representation integral as a discretised and truncated sum the
construction of ¥ involves the generation of the independent
random variables dZ and dZ; — with zero mean and variance
1/2 — only. Assume now that a synthetic Gaussian random
field G(x), with zero mean and unit variance, is generated with
some specified spatial correlation structure

cc(k) = cg(|x — ) = Elg(x)g(y)] (10)

where E[-] indicates the expected value operator and g () is
the realisation of G(x) at location x.
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Following Bell (1987), the random field g(x) is trans-
formed into a rainfall field 7(x) through a suitable transfer
function R:r = R(g) so as to present a mixed probability
distribution, i.e. accounting for a specified percentage
(1 —p) of null values and being distributed as f(r)
elsewhere. To this aim a threshold value, go, is defined
such that the Gaussian field exceeds g for a percentage p of
space. The portion of the field that exceeds the threshold is
then re-scaled so that its distribution is precisely f(r). In
other words, the variable g is converted into a variable #
uniformly distributed in the interval [0,1]:

u=G(g>=#/_;exp(—§cZ)dc (1)

To have = 0 for u < (1 — p), the threshold gy will be such
that:

G(go) = (1 - ) (12)

and the values of u greater than (1 — p) are scaled through
the complement of the cumulative distribution of f(r):

e o fr=c -0/
C(r) = /r f(s) ds setting { u>(1-p)
(13)

where CLis the inverse functional of C. The transform R
is thus defined as follows:

R(g) =0 £<g

R(g) = C'[(1-G(e)/r] g>g0
The effect of the transformation %R on the correlation of the
Gaussian field (k) has been investigated by Bell (1987) and
the results are briefly summarised here. The corresponding
correlation generated by the transformation R is:

& (h) = (e (h)) (15)
Analytical expressions for y(c;) may be obtained for special
cases of the transformation R. In particular, when the
Gaussian variable G is transformed into a lognormal variable

via r = exp()L + 6g) we have (Mejia and Rodriguez-Iturbe,
1974):

(14)

exp(cg - 0%) — 1

& =(cq) = exp(o? — 1)

(16)
Given 7, the proper correlation function to be imposed on

the Gaussian field in order to obtain the desired correlation
of the rainfall field is then:

ca(h) =7~ (e () = 5 nl1 + (exp® — 1) -a(A)] (17)

where ¢, (k) is the desired correlation function. As an
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example, to obtain a lognormal field with correlation:

exponential: c(h) = exp(—a - k)

(18)

or Whittle (Bessel): ¢ (k) = o -k Ky(aé)

with K representing the modified Bessel function of the
first type and order one and a being any positive parameter,
the correlation functions to be imposed on the Gaussian
field will be, respectively:

colh) = %ln[l + (exp(6?) — 1) exp(—a- h)]

) (19)
cc(h) = ?ln[l + (exp(c?) — 1) - ah - Kq1(a&)]

The spectral density functions will be, in the two cases:

S(k) = % /0 [l + (b — 1) exp(—o - &)] cos(kE)dE

S(k) = % A In[l + (6 — 1) - a - K1(a&)] cos(kE)d
(20)
where b = exp(6”), and the integral scales become:
A= lz/oo Infl + (b — 1) exp(—a - E)]d¢
9% Jo
(21)

1 (1
_ L[ty
0" Jo y

with y = (b—1)exp(—al) and:

1 o0

A In[l +(6—1)-af- Ki(a- &) (22)

0'2()

respectively. Thus A = S(k) 7/2; note that / is a function of
« and o2

In the exponential case, numerical solutions of the
integral in Eqn (21) can be obtained to get the relationship
o = o A) for a given value of o2, and the spectrum for any k
may be also obtained by means of numerical integration or
by Fourier Transform. Four examples of synthetically
generated rainfall fields with an exponential correlation
function are presented in Fig. 1 where two-dimensional
realisations over a grid of 256 x 256 nodes are depicted.
The underlying Gaussian field has the same statistical
parameters in all realisations while the amplitude of no-rain
areas varies from 1-p =0.8 to 1-p =0.2; the same initial
Gaussian realisation has been used in the four rainfall fields
so as to show the effect of the transformation R with various
no-rain area thresholds.



A conditional simulation model of intermittent rain fields

0 10 20 30 40 50 60 70 80
Rainfall depth [mm]

Fig. 1. Synthetic realisations of the two-dimensional rainfall field generated over a grid of 256 X 256 nodes. The rainfall field has the same
statistical parameters in all realisations while the intermittence varies from I1-p = 0.8 (upper left) to 1-p = 0.2 (lower right). The same

unconditional Gaussian realisation has been used in the four cases.

The conditional generator

The synthetic generation of random fields with specified
covariance structure and probability of no-rain areas
described earlier is able to reproduce the observed rainfall
field only in a statistical sense. Each of the generated rainfall
maps, either two- or three-dimensional, is just one of the
possible rainfall scenarios with the specified characteristics.
Reducing the ensemble of the possible realisations by
constraining the generated random field is necessary to
reproduce further known characteristics of the rainfall field.
The simplest case is that of conditional generation, where a
fixed number of grid points is assigned some measured
rainfall value (i.e. rainfall depth in a given time step) as

provided by any available rain gauge station. A further step
is that of conditioning on area averaged values that may be
obtained by sampling the observed rainfall field through a
given support area, as is the case of satellite derived
observations at a larger scale or even the output of numerical
weather prediction models.

In this paper, the analysis will be limited to conditional
generation of rainfall fields based on grid-point values, with
reference to rainfall depths as observed in a fixed number of
rain gauges. A new method for conditional simulation based
on grid-point values is presented: the idea is to adjust the
value of the unconditionally simulated field to match the
value of the conditioning nodes while preserving the desired
correlation structure and intermittence. The method is
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based on the properties of the Fourier transforms in the face
of the convolution operation, i.e. the mathematical tool
actually exploited by random field generation algorithms
based on DFT. For the sake of conciseness, the description
of the method is addressed in the following with reference to
the one-dimensional case: the extension to the two- and
three-dimensional cases is, however, straightforward.

The basic concepts and mathematical properties of the
Fourier Transform, and the representation of the convolu-
tion and correlation algorithms can be expressed through
the combination of two functions — say in the time domain
for simplicity — z(¢) and w(¢), and the respective Fourier
transforms Z(f) and Q(f) in the frequency domain.

The convolution theorem states:

zxw < Z(f) - Qf) (23)

where “* is the convolution operator and the notation ‘<’
indicates a Fourier transforms pair. In other words, the
Fourier transform of the convolution of two functions is the
product of the Fourier transforms of the two functions:

F(z x w) = F(z) - F(w) (24)

where F indicates the Fourier transform operator.

The main property of interest, as regards the operator
recalled above, is linearity. The most important conse-
quence of this property for application in the present
context is that the sum of independent solutions of the
convolution problem is still a solution of the same problem.

This means that a random field with given covariance
structure as generated through some spectral method may
be obtained alternatively by adding two independent
solutions of the convolution problem. By choosing one of
them as the specific solution obtained by convolution of an
impulse of proper amplitude, and the other one as a generic
(thus independent) solution, the resulting field is still a
solution of the generation problem where the value at the
impulse location may be specified as desired.

The specified value at any conditioning node is preserved
exactly and the randomness and correlation structure of the
neighbouring region are preserved as well. Also, the
conditioning nodes are not forced to act as local maxima,
as is the usual inconvenience of many of the available
conditional simulation techniques.

Note that the convolution of an impulse of unit amplitude
with the correlation function produces the shape of the
correlation function peaked at the location of the impulse
itself. The eventual transformation of the random field from
the log-space into the natural space, to obtain a rainfall field
with given probability distribution of no-rain areas as
described in the previous section, does not affect this
methodology except in the determination of the proper
amplitude to be set for the impulse function. An analytical
expression for the amplitude of the conditioning impulse
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can be derived using for numerical convenience
1 g
u=1-—G(g) =<erfc| == 25
© = (%) (25)

instead of Eqn. (11) to generate a uniformly distributed
variable (Bell, 1987). The effect of the transformation

r = R(g) at any single node can thus be written, using Eqns.
(13) and (14), as:

r=exp(n +0¢) (26)

where L and ¢ are the mean and variance expected from the

generated field, and

The error function erf{-) is defined as:
enf () = = / S (28)
v Jo

and the complementary error function is simply:

erfe(x) = 1 — erf (x) = % / " (29)

The following expression is thus obtained for » = R(g):

—enfuraitor 11 1-ar(2)]}

(30)

Equation (30) can be written in terms of any conditioning
value #* =#(x*) and inverted in order to obtain the
corresponding amplitude of the function g* = ga(x*), as
required in the conditional field ga(x), in the form:

¢ = Vi {i-prp MO H L o

The value of the unconditional simulation at x* is
g =g, (x*), so the shift to be added to the unconditional
field at x* is g* — gJ,.

The field ga{x) obtained by adding the convolution of
such an impulse to the unconditional realisation, will give
the desired value at x* and is thus given by:

en(x) =gr(x) + [ —gy] - cc(lx — o) (32)
where:

~ _ & —Hy
g="" (33)

in which p and 6% are the mean and variance of the final
field.



Here g;{x) is the unconditional Gaussian field, thus a
generic solution of the convolution problem, g*;-is the value
of the unconditional field at the conditioning node x*, and
¢c{|x — x*)) is the amplitude of the correlation function at a
distance |x — x*|. At x* the conditional field g degenerates
to ga(x*) = §* because ¢g(0) = 1. The conditioning rule at a
single site is illustrated in Fig. 2 for the case of one-
dimensional fields.

For the sake of simplicity, the possible numerical effects
of the involved operations on the statistics of the generated
field were not mentioned in the above developments.
Actually, the sum of the unconditional field N[0,1] with the
convolution of an impulse of given amplitude produces an
output field where the correlation structure is preserved but
the zero mean and unit variance characteristics are not. Note
that p need not be preserved at this step because the

- transformation producing intermittence in the field is made
at a later time and the addition above is between two fields
where the probability of null values equals zero. In the
theoretical case of infinite space-time domain, this effect
would be negligible. In practice, however, such effect needs
to be taken into account by normalising the combined field
gn(x) while preserving g* as derived from Eqn. (31); to
account for the normalisation process, the amplitude of the
impulse function at the conditioning node must be modified
according to Eqn. (33).

In case the field is sufficiently large, pa and o’y are given

A conditional simulation model of intermittent rain fields

by:

(34)
k=L +7% dl el =1+ 7" - 1]

where pp =0 and 6%,,=1 are the statistical parameters of
the unconditional field, 1, and o2, are the mean and variance
of the field obtained as a convolution of the impulse
function, and §* is the amplitude of the impulse function.

The values for py and % can be obtained by eliminating
g* between Eqns. (33) and (34), yielding:

= ], (359)
ON
on=1-0c2+ [g—ﬂ] o (35b)
ON

Extension of the overall methodology to the case of n
conditioning nodes requires the convolution influence of the
impulse amplitudes on each other to be considered. The
problem is reduced to the solution of an algebraic system of
equations in the form:

[G] - o] = [g"] (36)

(g*-gv*)-ca(jx-x*)

p=1-G(go)

g*-gv*

LOG SPACE

gv(x)  en(®) ~

g \1 ..

G(x) =N[0,1]

D W
\/V

| NATURAL SPACE

R(x) =p-LN[u, o]

X*

Fig. 2. Indicative sketch of the one-dimensional conditioning rule at a single point x* where a value r* for the rain field is desired. The convoluted

impulse with amplitude (g* — gv*) is added to the unconditi

! random field G(x) in the log space to obtain a new field gy which, after

transformation through R will yield the conditional rain field R(x).
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where
1 ¢cc(d2) cc(din)
ccldzy) 1 cc(dzn)
[G] =
CG(dn,l) CG(dn,z) oo 1

with ¢c(d;;) = cc(|vi—xj]) and ccld)) = cc(d;);

[8*] is the vector of the amplitudes of the impulse
function in the conditioning nodes; [«] is the unknowns
vector containing the weighted contributions of the
conditioning nodes.

The expression of py and oy in this latter case is:

v =m0 (578)
i=1
PN=1+a3 s —ff) ()

ij=1

where [B] = B (=1, ...n) is the solution of the system

[G] - 1] = [U] (38)

[U] being a unit vector.

The last term in Eqn (37b) accounts for variance
reduction due to the correlation of the conditioning function
with the original field.

In Fig. 3 the procedure for multiple-site conditioning is
illustrated in the two-dimensional case. The steps of the
procedure are represented, starting from (a) the initial
Gaussian field realisation, with zero mean, unit variance and
exponential de-correlation and (b) the unconditioned rain-
fall field with percentage of rain areas 1-p =0.2. In the
central picture (c) the effect of the convolution of five
different impulses with specified amplitudes at five
conditioning nodes is represented in the log-space. This is
combined with the unconditional Gaussian field (a) in order
to obtain a random field (d) which will produce — after
transformation through %R — the desired intermittent rainfall
field (¢) duly conditioned on multiple-site observations.

Note that the method used for interpolation of the
impulse functions out of the conditioning nodes is close to
conventional kriging (Matheron, 1971), though it uses
covariance as a basis function. The objective, however, is
not that of searching here for any optimal interpolator
characteristics as the only requirement is that the basis
function must be a solution of the convolution problem.
Equation (36) provide a simple way to achieve such a
condition, though any other interpolation could be used,
provided it satisfies the requirements above.

The core of the methodology is Eqn. (31), together with
the system in Eqns. (35a,b), which ensure that — after
transformation through % — the resulting rain field,
conditional on rain gauge observations, will preserve exactly
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the imposed second order  statistics and the specified
intermittence as well.

Conclusions

A methodology has been presented to perform conditional
simulation of rain fields, where intermittence — intended as
the probability of no-rain areas — is preserved exactly while
conditioning is solved analytically. The operation is
performed in the log-space and conditioning parameters
are evaluated so as to reproduce the desired figures once the
field is transformed through the functional R into the
natural space.

The relevance of modelling intermittence in practical
applications is strongly dependent on the space and time
scales involved in the representation of the rain field. The
distribution of no-rain areas may play a significant role when
simulation of the rain process is required at relatively fine
scales. This is the case, for instance, in urban hydrology and
the management of small to medium size catchments (10 —
100 km?), especially when the interest is on extreme events
and prediction of critical runoff conditions is required.
Another example is the management of wastewater treat-
ment plants in urban environments for control of the highly
polluted initial rain waters that need to be collected and
routed to the plant.

In general terms, conditional simulation of a rain field that
includes intermittence as a parameter is useful when the
available monitoring system fails to cover a significant range
of fine space-time scales and thus to reproduce the process
with accuracy. The typical case is that of a coarsely spaced
network of rain gauges that are, on average, more distant to
each other (for a given event or class of events) than the
characteristic spatial scale of the intermittence process.
Simulation of the rain field with the proposed methodology
allows one to take care, at least in a statistical sense, of the
role of intermittence in determining the space-time
variability of precipitation.

The distribution of no-rain areas is often neglected in
conditional simulation problems because of the difficulty of
estimating p in quantitative terms based on the available
monitoring devices. Radar maps are usually obtained at a
sufficiently fine resolution for assessment of the distribution
of no-rain areas, assuming that a physical lower scale limit
exists for intermittence around a few hundred metres.
However, they represent an indirect measure of precipita-
tion which also involves some modelling of the atmospheric
column at each location, and the accuracy of the rain maps
has not been fully demonstrated yet, especially in the case of
heavy rainfall. .

Where the radar is not available, rain gauges can be used
to derive such information. Provided coherence is preserved
between the space and time scales of observation,
intermittence in space can be derived from that observed
in time and used as an input parameter for the algorithm
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Fig. 3. The subsequent steps of conditional simulation in two dimensions: (a) the unconditional Gaussian field with zero mean, unit variance and
exponential decorrelation (upper left); (b) the obtained rainfall field with intermittence 1-p = 0.8 (upper right); (c) the convoluted effécts of five
different impulses with specified amplitudes at five conditioning nodes (central picture); (d) the modified Gaussian field obtained as a sum of (a) and
(¢) (lower left); and (e) the desired intermittent rainfall field (lower right) duly conditioned on multiple-site observations.

proposed. One implication of the methodology, however, is  differ from that of the rain process. Should observations not
that the resulting structure of intermittence in space is validate this assumption, the model fails to reproduce such
controlled by the underlying unconditional field, i.e. is the  variability.

same in both the spatial and temporal domain and does not Conditional simulation was addressed in this work with
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reference to some point measurement obtained at the
available rain gauge sites. The next step is to allow for
conditioning on area averaged values, which can be derived
from observations at some larger scales than those used for
simulation of the rain field. These can be obtained, for
instance, from remote sensing using radiometers borne on
geostationary and/or sun-synchronous satellite platforms
(Smith ez al., 1992; Mugnai ez al., 1993). In the near future,
the output of physically based models of the atmosphere will
probably achieve the resolution and accuracy requirements
to be used as a surrogate of such measurements. In this case,
the methodology presented could be used as a downscaling
algorithm, conditional on both point and area averaged
constraints.
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