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Abstract
A rain field reconstruction and downscaling methodology is presented, which allows suitable integration of large scale rainfall information
and rain-gauge measurements at the ground. The former data set is assumed to provide probabilistic indicators that are used to infer the
parameters of the probability density function of the stochastic rain process at each pixel site. Rain-gauge measurements are assumed as the
ground truth and used to constrain the reconstructed rain field to the associated point values. Downscaling is performed by assuming the a
posteriori estimates of the rain figures at each grid cell as the a priori large-scale conditioning values for reconstruction of the rain field at
finer scale. The case study of an intense rain event recently observed in northern Italy is presented and results are discussed with reference to
the modelling capabilities of the proposed methodology.
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Introduction
Direct measurements of space-time rainfall, desirable in
many hydrological studies, are subject to operational
limitations that reduce monitoring capabilities to the
frustrating case of negligible spatial information when
compared to the size of the catchment areas on the ground.
Rain-gauge measurements are therefore usually referred to
as being at the point scale in rainfall monitoring.

Since the first geostationary platform for meteorological
use was made operational in the late ’60s, the chance of
obtaining quantitative estimation of the rain field over
extended areas by means of suitable retrieval from newly
available indirect measurements has faced hydrologists and
remote sensing scientists. Several empirical, semi-empirical
and physically-based algorithms are now available in the
literature for the retrieval of space-time precipitation, based
on the remote sensing of more or less related variables such
as radiance temperatures, brightness temperatures, etc. (see
e.g. Barrett and Martin (1981), Barrett and Beaumont (1994)
for a review of operational methodologies).

Though significant contributions to the understanding and
modelling of meteorological processes at the global,
synoptic and meso-scales based on remote sensing can be
found in the literature, the very indirect nature of data

coming from remote sensors makes quantitative estimation
of the so-called ‘instantaneous’ rain field hardly reliable in
a deterministic approach. More encouraging results have
been obtained at climatological scales, where the total
rainfall accumulation over sufficiently large intervals in time
(seasons or years) is obtained as the sum of numerous
estimates of the rain field, which ensures reduced variances
and reliable estimation of the mean field.

It is quite reasonable to assume that remotely sensed
estimates of instantaneous rain fields can be viewed as
probabilistic indicators of the actual rain rate figures and
used to infer at least one parameter of the probability density
function for rain intensity at each pixel site. This represents
the assumption underlying the methodology proposed in this
paper, aimed at suitable integration of rainfall estimates from
remote sensing with the observations from a number of rain-
gauges at the ground. Rain-gauge measurements are
assumed as the ground truth even though clear evidence of
non-negligible measurement errors affecting both traditional
and modern instruments is increasing (Sevruk and Lapin,
1993).

In addition, estimates of space-time rainfall are provided
operationally by numerical weather prediction models both
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at the global (General Circulation Models, GCM) and
synoptic to meso-scale (Limited Area Models, LAM).
Again, the information is reliable at large scales while the
uncertainty associated with rainfall estimates increases with
increased resolution in both space and time. In this case,
the uncertainties involved derive from the simplifying
hypotheses that are needed to run operational physically-
based models of the atmosphere (hydrostatic approach,
rough description of the orography, use of climatological
data for model initialisation, etc.), with significant
implications on the actual predictability of the precipitation
field.

Reliable monitoring and prediction of space-time rainfall
is therefore affordable at resolution scales that are in the
order of 5 to 10 km in space and three to six hours in time.
At finer scales, though radar rain maps are becoming
increasingly reliable, estimation of the rain field is most
commonly performed by interpolation based on point
measurements such as geostatistics or even simpler
algorithms. Simple Kriging is the best known geostatistical
technique; it is based on the assumption that the expected
value of the regionalised variable is a known constant,
although this is unrealistic for many processes. In the case
of universal Kriging, the assumption of a known drift is
simply unreasonable because statistical parameters are rarely
known a priori for natural systems (Papamichail and
Metaxa, 1996). Geostatistical techniques have been
developed that do not require that the basic statistical
characteristics of the rain process (usually the mean and
covariance structure) are known, as these are derived from
the same data to be interpolated (Bastin and Gevers, 1985;
Bacchi and Borga, 1993). Exploitation of data sets coming
from different sensors is possible through the so called co-
Kriging, which has been used e.g. for integration of rain
gauge and radar data (Krajewski, 1987; Delrieu et al., 1988;
Seo et al., 1990a,b; Seo 1998a,b). Geostatistical techniques
have also been developed for use in case of fractional
coverage situations (Barancourt et al, 1992; Seo, 1998a).

In this work, the basic statistics (second order description)
are derived from interpretation of the information content
of the large scale sensor, while the rain-gauge data — which
are viewed as completely reliable measurements — are used
as quantitative constraints for the generation of the rain field.
The geostatistical approach presented in this paper allows
reconstruction of the deterministic component of the rain
field based on both large scale and local data, together with
the associated random component, which is expressed in
terms of its statistical parameters. In addition, estimation of
the actual reliability of the reconstructed rain field is made
possible at the pixel scale, so that uncertainty can be handled
and quantified for eventual uses of the derived information.

The same approach has been used to determine the sub-
grid distribution of rainfall down to the scales that are
required by the hydrological modelling of small to medium
size catchments in mountainous terrain. The proposed
downscaling algorithm is again constrained to the rain-gauge
data whenever these may be available at a finer resolution
in time.

Problem statement
Consider the target region as a spatial domain that is
discretised, at each time step T∆ , by a regular grid with

NM ⋅  cells. Each grid cell has total area yxS ∆⋅∆=∆ .
A random variable kR  ( NMk ⋅= ,....,1 ) is associated
with each cell of the grid to represent the stochastic rainfall
process, R, at each location. Within the target region, a
certain number, G, of rain gauge measurements may be
available, which provide the constraining rainfall values( )Gjr j ,...,11 ==r . Also, from a large scale sensor
χ, the conditioning indicators at each grid cell kx
( NMk ⋅= ,....,1 ) can be derived after appropriate
interpretation of the original data. The term “indicator”
denotes that these are not actual rainfall measurements and
their probabilistic interpretation is explained below.

The following assumptions are made:

1. the joint probability distribution of variables
( )kk RZ ln=  ( NMk ⋅= ,....,1 ) is Gaussian —

then, the marginal distribution of each variable
( )kk RZ ln=  is ( ) ( )( )2

lnln ,
kk RRN σµ ; hence the

rainfall variable kR  has a log-normal probability
distribution ),( 2

kk RRLN σµ ;

2. some known relationships hold between the expected
value and variance of the random variable kR  and the
conditioning indicators kx  in the form:

[ ] ( )kkR xfRE
k

==µ (1)

( )[ ] ( )kRkR xgRE
kk

=−= 22 µσ (2)

In addition, it is assumed that the relationship (1) does
not allow that 

kRµ  takes exactly null values and
therefore no cells with 0=

kRµ  can be obtained.
Fractional coverage in the final rain field can be obtained
by the application of an appropriate threshold level.

3. the covariance matrix of Z = ( )NMZZZ ⋅,....,, 21 , the
stochastic log-rainfall process, can be estimated on the
basis of the available information; using such statistical
structure together with Eqns. (1) and (2), the stochastic
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log-rainfall process Z is completely determined and can
be assumed as the a priori formulation of the log-rainfall
field; the best a priori estimate of that field is

   [ ] ( ) ( ) ( )( )
NMRRRE

⋅
== lnlnln ,....,,ˆ

21
µµµZz (3)

4. the rain-gauge measurements jr , obtained as area
average values after application of suitable variance
reduction coefficients to the fluctuations of the actual
rain-gauge figures around the expected values jRµ ,
are considered as realisations of jR  (and therefore( )jj rz ln=  as realisations of jZ ) in all grid cells
where at least one rain-gauge is located.

Let:

( )∑
⋅

=

µ
⋅

=
NM

k
RkNM

m
1

lnˆ

1
z (4)

and

( )( )
2

1
ˆln

2
ˆ

1 ∑
⋅

=

−
⋅

=
NM

k
R m

NM
s

k zz µ (5)

be the sample mean and variance of the log-rainfall field ẑ
that are derived by the large scale sensor χ. If the expected
value ( )kRlnµ  is constant over the target region, the field is
said to be homogeneous and its sample variance obviously
is equal to zero.

Let vector Z be partitioned  into two sub-vectors, the first
collecting the random variables corresponding to cells where
a conditioning realisation is known, and the second
containing all other variables, in the form:

( )21, ZZZ = = ( )NMGG ZZZZ ⋅+ ,.....,,,...., 11  (6)

where, in general, NMG ⋅<< , as the rain-gauge
measurements cover only a small portion of the target region.
The expected value and covariance matrix of the stochastic
process Z are given by:

E[ ]Z = ( )
21 ZZZ µµµ ,= (7)

where the generic element of the covariance matrix is
defined as:

( ) ( ) ( ) ( )( ) ( ) ( )( )[ ]
jiji RjRiRR RRE lnln

2
ln,ln lnln µµσ −⋅−=

(9)

and Ó  is assumed to be positive definite and symmetric,
which implies 2112 ÓÓ = .

For evaluation of the off-diagonal terms in (8) the
correlation coefficient, or normalised covariance, is defined
as:

( ) ( )

( ) ( )ji

ji

RR

RR

ij
lnln

2
ln,ln

σσ
σ

ρ
⋅

=
(10)

which, by assumption, can be estimated from the available
information.

The joint probability density function of 2Z  conditional
on the available realisations =1z ( )Gzz ,...,1  at the rain-
gauge locations can be obtained using standard techniques
(Box et al., 1994, p.281) as:

p( )=12 zZ (2π) (11)

with

( )
12 11.21.2 ZZ ìzâìì −⋅+= =E( )12 zZ (12)

121.22211.22 ÓâÓÓ ⋅−= (13)

1
11211.2 ÓÓâ −⋅= (14)

where 11.22Σ  is positive definite, and 1.2β  is also known
as the regression matrix.

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )









=



























=

⋅+⋅⋅⋅

⋅++++

⋅+

⋅+

2221

1211

2
ln

2
ln,ln

2
ln,ln

2
ln,ln

2
ln,ln

2
ln

2
ln,ln

2
ln,ln

2
ln,ln

2
ln,ln

2
ln

2
ln,ln

2
ln,ln

2
ln,ln

2
ln,ln

2
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..

......

..

..

......

..

11
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RRRRRRR
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σσσσ

σσσσ
σσσσ

σσσσ

(8)

( ) ⋅⋅ −−⋅− e2

1

11.22ÓGNM

( ) ( )










 −⋅⋅−
−

−

2
exp 1.22

1
11.221.22 ìZÓìZ T
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Rain field reconstruction and
downscaling
The probability density function defined in Eqn. (11) can
be used for conditional generation of stochastic rainfall fields
based on the available multi-sensor observation.

Besides, as for 1.212 ]|[ µ=zZE  the multivariate
distribution p( )12 zZ  has its maximum density, it can be
viewed as natural to select 1.2ì  as an estimate of the log-
rainfall field in all cells where no rain-gauge measurements
are available. Equation (12) can thus be interpreted as a
procedure that, on the basis of the available ground based
data, allows the a priori estimate of the rainfall field in un-
gauged cells to be corrected, thus providing the a posteriori
conditional estimate of the rain field .

The generic element [ ]1

* zkk ZEz =
( )NMGk ⋅+= ,....,1 can be determined using Eqn. (12),
once it is rewritten as

( ) ( )( )∑
=

−+=
G

j
RjkjRk jk

zz
1

lnln

* µβµ

NMGk ⋅+= ,....,1 (15)

kjβ  being the generic element of matrix 1.2β .
In this view, *

kz  is the log-rainfall estimate in any generic
un-gauged cell and

( )*
1 z,zz = (16)

where

[ ]NMGkzk ⋅+== ,.....,1**z (17)

is the best a posteriori estimate of the log-rainfall field
conditional on the available rain-gauge data.

The error variance of such an estimate,

( )[ ]2*2
kke zzE

kz
−=σ

NMGk ⋅+= ,....,1 (18)

corresponds to the kth diagonal element of 11.22Σ . Obviously,
the error variance of the components of 1z  is equal to zero
by assumption.

The explained variance can be defined as

2
ˆ

222
zsS

kzkk eZz +−= σσ

NMGk ⋅+= ,....,1 (19)

and the normalised explained variance as












+
−=

2
ˆ

2

2

2 1
~

zs
S

k

kz

k

Z

e

z σ

σ (20)

This coefficient gives a measure of the deterministic part
of the precipitation process identified from the proposed
procedure, i.e. the signal part that is described by the
available rain gauges and the rainfall field estimated by
sensor χ .

The rainfall estimate *kr  ( )NMGk ⋅+= ,..,1  can be
obtained through





 += 2**

2

1
exp

kzekk zr σ (21)

[ ]{ }












 +⋅−+⋅= 2*2*2

2

1
2exp2exp

kzkzkr
ekeke zz σσσ

(22)

and ( )*
1 r,rr =  can be defined as the best a posteriori

estimate of the rainfall field.
To discuss the conceptual characteristics of the estimator

in Eqn. (15), let us consider a stochastic log-rainfall field
where only one rain gauge measurement ( )pp rz ln= is
available for conditioning. In this case matrix 1.2â , defined
by (14), is simply a column vector of the form:

1.2â =
( )

( ) 










⋅=⋅ NMkkp

R

R

p

k ,....,2
ln

ln ρ
σ
σ

(23)

so that

[ ] ( )
( )

( )
( )( )

p

p

k

k Rpkp
R

R

Rpkk zzZEz ln
ln

ln

ln
* µρ

σ
σ

µ −⋅⋅+==

(24)

The variance of the estimator error can be obtained by
(13) as:

( ) ( )22
ln

2 1 kpRe kkz
ρσσ −⋅=       ( )NMk ⋅= ,..,2       (25)

which provide

( ) ( )
( ) 










+
−⋅

−=
2
ˆ

2
ln

22
ln2 1

1
~

zs
S

k

k

k

R

kpR
z σ

ρσ
(26)

The following observations can be noted:
(a) when the a priori variance ( )

2
ln kRσ is independent of k,

the correction term to be added to the a priori estimate
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( )kRlnµ  (in Eqn. 24) is a function of the correlation
coefficient only; thus, assuming kpρ  as a suitable
decreasing function of distance, the shorter the distance
between cells k and p, the larger such a correction term
will be. Obviously, there will be no correction if the
two cells are uncorrelated; similar considerations hold
for 

2

kz
eσ  .

(b) when the a priori variance ( )
2
ln kRσ  varies with k, Eqn.

(24) implies larger corrections  for cells having larger
a priori uncertainty, i.e. larger ( )

2
ln kRσ  (at the same

distance from p); note that, when ( ) ( )pk RR lnln /σσ  is
greater than 1, corrections larger than ( )( )

pRpz lnµ−
are possible.

As regards the normalised explained variance, note that:
(a) in the case where the random field is assumed to be

homogeneous, i.e. when 02
ˆ =zs , it turns out

22~
kpe

kz
S ρ= ; thus the normalised explained variance

reaches 100% in the constrained cell (where information
is totally reliable) and decreases monotonically with

kpρ  (i.e. as the distance increases, following the above
assumption on the function kpρ ).

(b) when the random field is not homogeneous, the
corrections to the estimates ( )( )

kRkz ln
* µ−  for

unconstrained cells are increasingly reliable as
2
ẑs increases.

In Fig. 1 the pattern of the a posteriori estimate *
kz , the

variance of the estimator error 
2

kz
eσ , and the normalised

explained variance 2~
kzeS  are depicted column-wise for a

sample field with dimensions M=20 and N=50 in the three
different cases where the information from the large scale
sensor χ  only (first row), the large scale sensor and one
conditioning gauge (second row), and the conditioning
gauge with a homogeneous base field (third row) are used
to obtain the conditional rainfall field.

Fig. 1. Comparison of the spatial variability of *kz , 
2

kzeσ and 
2~

kzeS  in a sample case where a) the larger scale sensor only, b) the larger scale

sensor and one conditioning gauge, and c) the conditioning gauge over a homogeneous base field, are used for reconstruction field.

*
kz     

2

kz
eσ      

2~
kz

eS

(c) Conditioning gauge over a homogeneous base field

(b) Large scale sensor and one conditioning gauge

(a) the larger scale sensor only
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Consider now a given sub-grid partition of the target
region both in time, using τ/' TT ∆=∆ , and space, using

2' /δyxS ∆⋅∆=∆ , which leads to the new grid
dimensions Mm ⋅= δ  and Nn ⋅= δ  with δ > 1 and
τ >1 (see Fig. 2). Again, a random variable hR
( )nmh ⋅= ,....,1  can be associated with each sub-grid cell
to represent the stochastic rainfall process, R, at each
location. The rain-gauge measurements are now attributed
to the corresponding sub-grid cells using the proper area
reduction factor, which is a function of the cell size.

The expected value and variance of the random variable

hR  are now derived from :

[ ] ( )kPh
r

RE k
hRh

∈∀==
τ

µ (27)

( )kPhCV
hh RR ∈∀⋅= 222 µσ (28)

where kr  is the kth element of ( )*
1 r,rr = , P(k) = {sub-

grid cells belonging to the kth cell at larger scale} and CV is
the coefficient of variation.

The covariance matrix of Z =( )nmZZZ ⋅,....,, 21 — the
new log-rainfall process at sub-grid scale — can also be
evaluated, so that the a posteriori estimate of the rain field
at the larger scales acts here as the a priori estimate of the
sub-grid scale process in all ungauged locations. It is also
possible to define the stochastic log-rainfall process

( )21, ZZZ = = ( )nmGG ZZZZ ⋅+ ,.....,,,...., 11 (29)

and, therefore, obtain the joint probability distribution of
( )12 | zZ , conditional on the G rain-gauge measurements
at sub-grid scale.

To calibrate the mappings defined by Eqns. (1) and (2)
and validate the proposed procedure, it would be necessary
to run several experiments with varying model parameters

and finally compare the estimated conditional rainfall fields
with that observed. Unfortunately, such rigorous validation
is never possible, due to the common lack of any direct
measurements of spatially distributed rain fields. Indirect
methods are, therefore, usually addressed to perform both
calibration and validation exercises.

One possible technique for the evaluation of random field
estimates, known as the jacknife method, is based on
alternately suppressing one out of the available conditioning
sensors at the ground and evaluation, for each generated
conditional rain field, of the marginal probability distribution
of the random variable jR  at the corresponding grid cell.
This is compared with the measured value at that cell and
the procedure is repeated recursively for all the G nodes
where a rain gauge is located (see  Papamichail and Metaxa,
1996).

The procedure for conditional generation is therefore
evaluated on the basis of the following performance index:

∑
=

=
G

j
je

G
MSE

1

1
(30)

where
- ( )2*

jjj rre −=  is the error reduction at each cell j
where a sensor is located;

-  jr  is the “ground truth” measured at cell j;
-  

*
jr  is the rainfall estimate at location j when

measurement jr  is neglected;
The calibration parameters are contained in the functions
( )kxf  and ( )kxg , used to transform the measurements

provided by the large scale sensor χ  into the a priori mean
and variance of the random field, and in the selected model
for the correlation function ijρ . Application of the
validation procedure to the reconstruction of a real rain field
is described later with reference to the case study analysed.

Fig. 2. Conceptual scheme of the downscaling procedure
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A case study
For the storm event on May 28th 1998 in northern Italy, the
meteorological situation at synoptic scale is well described
by the Meteosat imagery in the thermal infrared (IR) band.
A sequence of such images is provided in Fig. 3

corresponding to the core of the event over the Liguria region
of Italy (see zoomed boxes).

The event analysed is embedded in a large-scale synoptic
disturbance associated with a pressure low located over
north-west Europe and producing a flow of humid air rising

Fig. 3.  Sequence of IR Meteosat images from 06.30 to 10.58 UTC for the event of May 28th 1998 over Europe and zoomed over northern Italy
where the study area is located
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Fig. 4. Location of the study area and distribution of the available rain gauges. The dotted square denotes the area where
downscaling is applied.

from the south of the Mediterranean Sea towards the coastal
European regions. Such meteorological conditions persist
for a few days due to the blocking mechanism caused by a
wide high located over Eastern Europe.

During the evolution of the event, humid airflows impinge
on the west coast of Liguria causing strong low level
convergence at local scales and intense precipitation over
the study area in the time window 05:00 to 16:00 UTC, .

Low level convergence is associated with areas where the
highest precipitation is observed, with values up to 100 mm
in six hours, with the maximum rain rates at the ground
being recorded at Mele, reaching 47 mm h–1. The location
of the study area and the distribution of the available rain
gauges are shown in Fig. 4 . The space-time distribution of
rainfall has been determined over the study area (about
25 000 km2) by using 44 active rain-gauges from the local
Hydrographic Service, most of them providing cumulated
rainfall in hourly intervals.

The rain field has been discretised using a regular mesh
of 50×18 pixels, each a square of side 5 km. To be coherent
with the temporal resolution of the rain-gauge information,
hourly data have been used for reconstruction of the rain
field at the original space scale (therefore after aggregation
of the half-hourly original Meteosat images). For the sake
of brevity, only results referring to a single time slot (09:00
UTC) are shown here.

Similarly, rain-gauge rainfall fluctuations have been made
coherent with the spatial resolution of the Meteosat images
by application of appropriate area reduction factors to
comply with the adopted pixel size.

To apply the proposed procedure for reconstruction of
the precipitation field the following parameters must be
specified:

1. second-order description (
kRµ , 

2

kRσ ) of the marginal
p.d.f. ),( 2

kk RRLN σµ  for 900,....,1=k ;
2. correlation coefficients ijρ  ( )900,......,1, =ji  for the

precipitation field.

Derivation of the parameters of the marginal p.d.f. from
the rain-gauge data alone is scarcely reliable as the available
stations are quite sparse over the region and not uniformly
distributed. It seems more reasonable to estimate such
parameters from the large-scale sensor information, which
is represented in this case study by the Meteosat imagery. It
is well known that IR Meteosat data represent the top cloud
temperature and a suitable function is needed for mapping
the radiance temperature data (grey levels) into the
corresponding precipitation figures (e.g. Adler and Negri,
1988).
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The mapping of the Meteosat measurements (for each
single pixel) to the mean values [ ]kR RE

k
=µ  has been

obtained by using the following relationship:

( ) 




 −
−⋅





+

−
⋅=

2

0

2

0
1 exp1

L

Cx

L

Cx
Lxf kk

k   (31)

where C
0 
is the grey level threshold, L

2
 is the shape parameter

and L
1 
is a suitable coefficient (see Fig. 5).

The above relationship may be considered as a suitable
continuous refinement of the empirical rule proposed by
Adler and Negri (1988). A constant CV (equal to 1) has
been assumed, so that

 ( ) ( )( )2
kk xfCVxg ⋅= (32)

As for the dependence of the spatial correlation coefficient
on the distance, the following decay model has been used:







−=

γ
ρ ij

ij

d
exp (33)

with ijd  the Euclidean distance between pixels i and j.
Calibration of the coefficients in functions (31) and (33)

has been performed by estimating the MSE for a series of
sets of parameter values. In Table 1 a synthesis of such
results obtained is reported, as regards the calibration of
parameter γ .

Table 1.  Results for the case study analysed with 300 =C ,
81 =L and 122 =L

γ =0 γ =1 ã =2 γ =3 γ =4 γ =8
MSE 3032 2405 1935.1 2134.3 3056 3537.2

From repeated experiments the set of parameter values
which allows the most reliable reconstruction of the rainfall
field corresponds to 300 =C , 81 =L , 122 =L  and

2=γ . The reconstructed rain field r  obtained by
integration of the data from the two sensors (with parameters

300 =C , 81 =L , 122 =L  and 2=γ ) and the map of
standard deviations ( )NMk

kr
e ⋅= ,.....,12σ  of the

random variables for the reconstructed field are shown in
Figs. 6 and 7. In Fig. 8 the reliability map  is presented for

     the derived rain field.
The observed ground truth and the estimate of the rain

figures are compared in Figs. 9 to 12. In Fig. 9 rain estimates
from Meteosat data, using (31) with parameters 300 =C ,

81 =L , 122 =L , and rain-gauge data are compared. In
Fig. 10 the rain figures obtained with the proposed procedure
using a base homogeneous field (the mean value of rain-
gauge measurements) are compared with the rain-gauge
observations.
   In Fig. 11 the rain figures obtained with the proposed
procedure using Meteosat data with the set of parameters
selected ( 300 =C , 81 =L , 122 =L  and 2=γ ), are
compared with the available ground truth, while in Fig. 12
the same graph is presented where a single outlier — which
can be due to some measurement error — is eliminated.

The proposed procedure seems to provide the best
performances when integration of Meteosat data and rain-
gauge measurements is addressed. This reflects the obvious
observation that the additional information contained in
Meteosat data does contribute to a better rain field
reconstruction than the use of rain-gauge measurements
alone (homogeneous field). The scatterplot in Fig. 12 is
obtained by eliminating the contribution of the station of
Mele (see Fig. 2); note that the correlation obtained is about
0.8. The measurement in Mele can be considered an outlier
if compared to the other instruments. Besides, this station is
out of the influence zone of the other instruments and, when
its contribution is neglected, the rain field information in
that region only comes from the Meteosat images. It seems,
therefore, reasonable to eliminate this information in the
validation phase.

Downscaling of the reconstructed rain field has been
possible thanks to the availability of high-resolution data
from a sub-set of the available rain-gauges. Data with
resolution in time of 15 minutes have been used and the
sub-grid scale distribution of rainfall has been determined
down to a spatial scale of about 3 km2 (1/9 of the original
scale). The sub-region already identified in Fig. 6 where
the highest rain rates were observed in the case study
analysed, has been resized with a finer grid and the mean
values at the former scale have been used for determination
of the parameters of the new joint probability density

Fig. 5. Mapping from Meteosat data (grey levels) to rain mean value
using Eqn. 31 with sample parameters.

( )NMkS
kz ⋅= ,....,1

~2
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Fig. 6. Rainfall field r  from Meteosat data constrained to rain-gauge

Fig. 7. Standard deviation ( )NMk
kr

e ⋅= ,.....,12σ  of rain fluctuations with respect to the Meteosat field constrained to rain-gauge

Fig. 8. Reliability map ( )NMkS
kz

⋅= ,....,1
~2   of the rain field
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function at the finer scale. The same procedure is then used
for determination of the rainfall field at a finer scale,
constrained at point values (five rain-gauges available) at
the corresponding new time scale.

The scatterplot in Fig. 13 is analogous to those in Figs.
9–12, though the scarce number of rain-gauges available
reduces the significance of the validation exercise in this
context.

Obviously, downscaling increases the explained variance

of the process with respect to that obtained at the original
scale. However, the variance of the rain field at finer scale
is greater than the variance at the original scale. Therefore,
with respect to the total variance, the explained variance
decreases provided any additional information at finer scales
(e.g. radar rain fields) is included.

In the first column of Fig. 14 the rainfall fields at 15-
minute intervals obtained after downscaling the 1-hour field
are shown while in the second column, maps of the standard
deviation for the random variables of the reconstructed fields
are reported.

Conclusions
Rain field reconstruction and downscaling procedures have
been proposed for integration of rainfall data coming from
different sources. Each of them provides different
information in terms of reliability and scale. The procedures
presented lead to the following results:
(1) mapping of the expected values of the reconstructed

rainfall field at the same resolution of the available large
scale information, using point data as a constraint;

(2) mapping of the residual variance of the precipitation

Fig. 9. Meteosat data and ground truth Fig. 10. Estimate values using homogeneous field and ground truth

Fig. 11. Estimate values using Meteosat and ground truth Fig. 12. Same as in Fig. 11 with a single outlier eliminated

Fig. 13. Downscaling results and ground truth
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Fig. 14. Downscaling of the reconstructed rain field (on the left) and associated standard deviation maps  (on the right)
for the case study analysed
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process, i.e. a measure of the information content of
the reconstructed rain field;

(3) quantitative evaluation of the reliability of the rainfall
field at each cell of the grid.

The probabilistic information obtained about the rainfall
field can be used for stochastic generation of different
scenarios, with the purpose of determining the risk
associated with specific space-time rainfall extremes in the
region of concern, conditional on the available information
on the specific rain event.

The procedure developed is based on the definition of
various functions, which are used for conversion of the
original information (as provided by the available sensors)
into quantitative information about rainfall intensity, or
better into suitable parameters characterising the
probabilistic distribution of the rainfall field. Obviously,
validation of such functions and their parameters is needed
by means of an extensive comparison with actual rainfall
measurements in a large number of case studies under
various climatological conditions.

Throughout the paper we have assumed a constant CV
over the whole rain field. The method can be modified easily
to account for variable CV, provided some physical meaning
is associated with the variability of these parameters. One
possibility is to investigate the role of local precipitation-
enhancing mechanisms in the study area and to model them
e.g. orographic forcing through suitable patterns (maps) of
CVs. This could be valuable in the downscaling frameworks
as it allows one to include small-scale sources of variability
in the process which are not yet captured by the large-scale
observations or the individual point measurements of
rainfall.

Further important features of space-time rainfall are not
fully resolved by the proposed rain field reconstruction
model, such as the bursting nature of rainfall with fractional
coverage and alternate rain / no rain periods. In the approach
presented, the modelling of such features is limited and
reduced to the pattern that can be observed by the available
rain-gauges. In the case of a sparse network, the fractional
pattern  between contiguous rain-gauges cannot be
accounted for in this model. Future developments, possibly
in synergy with intermittent models of space-time rainfall
(e.g. Lanza, 2000) may allow integration of such modelling
capabilities. This should proceed in parallel with the
development of enhanced observing systems, such as radar
networks, to obtain a measure of the space-time
characteristics of fractional rain fields.
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