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Abstract

A rain field reconstruction and downscaling methodology is presented, which allows suitable integration of large scalefainfation

and rain-gauge measurements at the ground. The former data set is assumed to provide probabilistic indicators that iarferuthed to
parameters of the probability density function of the stochastic rain process at each pixel site. Rain-gauge measuressaniecesdhe
ground truth and used to constrain the reconstructed rain field to the associated point values. Downscaling is perforomethgyress
posteriori estimates of the rain figures at each grid cell asatpeori large-scale conditioning values for reconstruction of the rain field at
finer scale. The case study of an intense rain event recently observed in northern Italy is presented and results anithsaissence to
the modelling capabilities of the proposed methodology.
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Introduction

Direct measurements of space-time rainfall, desirable ircoming from remote sensors makes quantitative estimation
many hydrological studies, are subject to operationabf the so-called ‘instantaneous’ rain field hardly reliable in
limitations that reduce monitoring capabilities to the a deterministic approach. More encouraging results have
frustrating case of negligible spatial information when been obtained at climatological scales, where the total
compared to the size of the catchment areas on the groundinfall accumulation over sufficiently large intervals in time
Rain-gauge measurements are therefore usually referred {seasons or years) is obtained as the sum of numerous
as being at the point scale in rainfall monitoring. estimates of the rain field, which ensures reduced variances
Since the first geostationary platform for meteorologicaland reliable estimation of the mean field.
use was made operational in the late '60s, the chance of It is quite reasonable to assume that remotely sensed
obtaining quantitative estimation of the rain field over estimates of instantaneous rain fields can be viewed as
extended areas by means of suitable retrieval from newlprobabilistic indicators of the actual rain rate figures and
available indirect measurements has faced hydrologists angsed to infer at least one parameter of the probability density
remote sensing scientists. Several empirical, semi-empiricalinction for rain intensity at each pixel site. This represents
and physically-based algorithms are now available in theéhe assumption underlying the methodology proposed in this
literature for the retrieval of space-time precipitation, basedaper, aimed at suitable integration of rainfall estimates from
on the remote sensing of more or less related variables sucbmote sensing with the observations from a number of rain-
as radiance temperatures, brightness temperatures, etc. (3puges at the ground. Rain-gauge measurements are
e.g. Barrett and Martin (1981), Barrett and Beaumont (1994assumed as the ground truth even though clear evidence of
for a review of operational methodologies). non-negligible measurement errors affecting both traditional
Though significant contributions to the understanding ancand modern instruments is increasing (Sevruk and Lapin,
modelling of meteorological processes at the global, 1993).
synoptic and meso-scales based on remote sensing can bén addition, estimates of space-time rainfall are provided
found in the literature, the very indirect nature of dataoperationally by numerical weather prediction models both
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at the global (General Circulation Models, GCM) and The same approach has been used to determine the sub-
synoptic to meso-scale (Limited Area Models, LAM). grid distribution of rainfall down to the scales that are
Again, the information is reliable at large scales while therequired by the hydrological modelling of small to medium
uncertainty associated with rainfall estimates increases witkize catchments in mountainous terrain. The proposed
increased resolution in both space and time. In this cas@éownscaling algorithm is again constrained to the rain-gauge
the uncertainties involved derive from the simplifying data whenever these may be available at a finer resolution
hypotheses that are needed to run operational physicallyn time.

based models of the atmosphere (hydrostatic approach,
rough description of the orography, use of climatological

data for model initialisation, etc.), with significant Problem statement
implications on the actual predictability of the precipitation consider the target region as a spatial domain that is

field.

discretised, at each time stébl , by a regular grid with

Reliable monitoring and prediction of space-time rainfall M [N cells. Each grid cell has total ar&8 = AX[A\y .
is therefore affordable at resolution scales that are in th@ random variableR, (k =1,....,M [N ) is associated
order of 5 to 10 km in space and three to six hours in timéyjth each cell of the grid to represent the stochastic rainfall
At finer scales, though radar rain maps are becomingyrocessR, at each location. Within the target region, a
increasingly reliable, estimation of the rain field is most certain numberG, of rain gauge measurements may be
commonly performed by interpolation based on pointayailable, which provide the constraining rainfall values

measurements such as geostatistics or even simplq'rl = (rj

j =1...,G). Also, from a large scale sensor

algorithms. Simple Kriging is the best known geostatisticaly the conditioning indicators at each grid cell

technique; it is based on the assumption that the expectqtk =1 ... M [N ) can be derived after appropriate
value of the regionalised variable is a known constantinterpretation of the original data. The term “indicator”
although this is unrealistic for many processes. In the casgenotes that these are not actual rainfall measurements and

of universal Kriging, the assumption of a known drift is thejr probabilistic interpretation is explained below.
simply unreasonable because statistical parameters are rarelyrpe following assumptions are made:

known a priori for natural systems (Papamichail and
Metaxa, 1996). Geostatistical techniques have been
developed that do not require that the basic statistical
characteristics of the rain process (usually the mean and
covariance structure) are known, as these are derived from
the same data to be interpolated (Bastin and Gevers, 1985;
Bacchi and Borga, 1993). Exploitation of data sets coming
from different sensors is possible through the so called co-
Kriging, which has been used e.g. for integration of rainy
gauge and radar data (Krajewski, 1987; Deletai., 1988;
Seoet al, 1990a,b; Seo 1998a,b). Geostatistical techniques
have also been developed for use in case of fractional
coverage situations (Barancoettal, 1992; Seo, 1998a).

In this work, the basic statistics (second order description)
are derived from interpretation of the information content
of the large scale sensor, while the rain-gauge data — which
are viewed as completely reliable measurements — are used
as quantitative constraints for the generation of the rain field.
The geostatistical approach presented in this paper allows
reconstruction of the deterministic component of the rain
field based on both large scale and local data, together with
the associated random component, which is expressed in
terms of its statistical parameters. In addition, estimation of_
the actual reliability of the reconstructed rain field is made
possible at the pixel scale, so that uncertainty can be handled
and quantified for eventual uses of the derived information.
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the joint probability distribution of variables
Z, :In(Rk) (k=1...,M [N) is Gaussian —
then, the marginal distribution qQf each variable
Z, =|n(Rk) is N m(Rk),Uli(Rk) ; hence the
rainfall variable R, has a log-normal probability
distribution LN (g, ,Uék) :

some known relationships hold between the expected
value and variance of the random variaBte and the
conditioning indicatorsxX, in the form:

Hg, :E[Rk]: f(xk)
o2 =E[R -1 ] = 0(x)

In addition, it is assumed that the relationship (1) does
not allow that Uy takes exactly null values and
therefore no cells withu, = 0 can be obtained.
Fractional coverage in the final rain field can be obtained
by the application of an appropriate threshold level.

@)
)

the covariance matrix &f = (Zl, Zyyiiilym ) the
stochastic log-rainfall processan be estimated on the
basis of the available information; using such statistical
structure together with Egns. (1) and (2), the stochastic
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log-rainfall proces& is completely determined and can where the generic element of the covariance matrix is
be assumed as thgriori formulation of the log-rainfall ~ defined as:
field; the besa priori estimate of that field is

z= E[Z] (“ln 1 Hin(r, ) uum(RMEN)) 3 U'ﬁ(R)"”(Ri) - E[(ln( " Hin E(In " Hin(r )()(\1)

4. the rain-gauge measuremerits, obtained as area
average values after application of suitable varianceand ¥ is assumed to be positive definite and symmetric,
reduction coefficients to the fluctuations of the actualwhich implies¥ , =X, .
rain-gauge figures around the expected valfies , For evaluation of the off-diagonal terms in (8) the
are considered as realisations Ef (and therefore correlation coefficient, or normalised covariance, is defined
|ni ias realisations ofZ, ) in all grid cells  as:

where at Ieast one rain-gauge is located. 2
_ GIn(R ),In(Rj)

_ Py =
Let: O-In(Ri) ET,n(RJ_) (20)
1 M N
m = m Hinr,) (4) which, by assumption, can be estimated from the available
- information.
and The joint probability density function o , conditional
1 MO 2 on the available realisatiors, = \Z,,...,Z; ) at the rain-
322 = Z (I’lln(Rk) - mz) (5) gauge locations can be obtained using standard techniques
M IN & (Boxet al, 1994, p.281) as:
be the sample mean and variance of the log-rainfall ffeld 1
. _ -(MmN-G) -
that are derived by the large scale sensdf the expected p(ZZ|Zl) =(2n) [[}222_11| 2 [ (11)

value U}, (g ) is constant over the target region, the field is

said to be homogeneous and its sample variance obviously ex 0 (22 - uz_l) 2211 [(Z u21)

is equal to zero. FE’ 2 &
Let vectorZ bepartitioned into two sub-vectors, the first

collecting the random variables corresponding to cells whergvith

a conditioning realisation is known, and the second

containing all other variables, in the form: Moy =Mz, +Boy Eﬁzl - uzl):E(Zz|Zl) (12)
72=(2,,2,)=(2y, 26, Zg s Zy ) (6)
Topou = B, X (13)
where, in generalg << M [N, as the rain-gauge
measurements cover only a small portion of the target region. 3,, =X ,; D:l'll (14)
The expected value and covariance matrix of the stochastic
proces< are given by: where 2, is positive definite, ang3,, is also known
as the regression matrix.
E[z] = 1, =y, 115,) (7)
2 2 2 2
3 Tnw o Teeink) T TninEn) g
i t ®)
2 2 2
5 = Ea nEn®) 0 On) TnRn®e) On(n(Re) oo P il
2 2 2
B’ln(RG+1 R)  OnRean®)  InRen) 0 Oin(Rea)in(Rua) O o Tl
t
2 0.2 0.2 0.2 D
@fmmwn(a) © OnRa)n®s)  Tin(Rya)in(Ren) - n(Run)
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2

downscaling S, = (20)

€2

Rain field reconstruction and % o2 H

s s, *s

The probability density function defined in Egn. (11) can K
be used for conditional generation of stochastic rainfall fields  This coefficient gives a measure of the deterministic part
based on the available multi-sensor observation. of the precipitation process identified from the proposed

Besides, gs forE[Z, | 2] = U,, the multivariate  procedure, i.e. the signal part that is described by the
distributionp?Zz Z, ) has its maximum density, it can be available rain gauges and the rainfall field estimated by
viewed as natural to seleft,; as an estimate of the l0g- sensory .
rainfall field in all cells where no rain-gauge measurements The rainfall estimater; (k =G+1..,M [N) can be
are available. Equation (12) can thus be interpreted as gptained through
procedure that, on the basis of the available ground based . 0. 1 , 0
data, allows the priori estimate of the rainfall field in un- r.= eXp%Zk + EUeZk E (21)
gauged cells to be corrected, thus providingthesteriori
conditional estimate of the rain field .

The  generic  element Z = El_Z ‘Z_I 2 _ [ﬁ +g2 ] - - 12 0
(k=G+L....,M EN)0anbedetermingdusingEkqn.l(12), Te, exp{2 % Uezk} eXpEJQ K 2062k

once it is rewritten as (22)
G
: = + ( . ) * . . .
4 'uln(Rk) Z 'Bkl Z, 'uln(R,-) andr = (rl,r ) can be defined as the besposteriori
J estimate of the rainfall field.
k=G+1....M [N (15) To discuss the conceptual characteristics of the estimator
_ _ in Egn. (15), let us consider a stochastic log-rainfall field
By being the generic element of ma}tri&z.l s _ where only one rain gauge measuremegt= In(rp)is
Inthis view, Z, is the log-rainfall estimate in any generic ayajlable for conditioning. In this case matflx , , defined
un-gauged cell and by (14), is simply a column vector of the form:
z= (zl,z*) (16) (0w O
_ . k=2,....M N[
o= kp
where EQCY E (23)
7 =[z k=G+1L...MN] (17)  so that

- Oin(r,) E( )
is the best posterioriestimate of the log-rainfall field Zc = E[Zk‘zp]: Hinwr) * Lp, Oz, ~ Hin(r,)
conditional on the available rain-gauge data.

The error variance of such an estimate, (24)
. =Bl -z)
O, = E{\z -z The variance of the estimator error can be obtained by
(13) as:
k=G+1....M [N (18)

— 2
jzk _alﬁ(Rk)E(l_pkp ) (k:2,--,|\/| EN) (25)
corresponds to thé'kliagonal element ok ,, , ;. Obviously,

the error variance of the componentszfis equal to zero  whijch provide
by assumption.

o

Theexplained variancean be defined as §2 _H_ gli(Rk) [([1— plfp)H
S =02 -02 +¢ - Orr)tS O 2o
Zy Zy €y z Ro)
k=G+1....M [N (19) The following observations can be noted:
(a) when thea priori varianceU,i(Rk)is independent d,
and thenormalised explained varianees the correction term to be added to ¢heriori estimate
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Hin(r,) (in Eqn. 24) is a function of the correlation reaches 100% in the constrained cell (where information

coefficient only; thus, assuming,, as a suitable is totally reliable) and decreases monotonically with

decreasing function of distance, the shorter the distance 0 (i.e. as the distance increases, following the above

between cell& andp, the larger such a correction term assumption on the functiofd, ).

will be. Obviously, there will be no correction if the (b) when the random field is not homogeneous, the

two cglls are uncorrelated; similar considerations hold ~ corrections to the estimatetz, — I"lln(Rk)j for

for Uez ) unconstrained cells are increasingly reliable as
(b) when thea priori vananceU,n(R ) varies withk, Eqn. s increases.

(24) implies larger corrections for cells having larger In F|g 1 the pattern of the posterlonestlmatezk the

a priori uncertainty, i.e. IargeUIn (at the same variance of the estimator err(§fe , and the normalised

distance fronp); note that, wher0|n(Rk)/U|n( o) is explained vananceS are dep|cted column-wise for a

greater than 1, corrections larger th@ /Jm(Rp) sample field with dlmensmrM 20 andN=50 in the three

are possible. different cases where the information from the large scale

As regards the normalised explained variance, note thasensor X only (first row), the large scale sensor and one

(a) in the case where the random field is assumed to beonditioning gauge (second row), and the conditioning

homogeneous i.e. whe|$A 0, it turns out gauge with a homogeneous base field (third row) are used

S2 = pk ; thus the normallsed explained variance to obtain the conditional rainfall field.

x 2 o2
Z ank Sezk

(a) the larger scale sensor only

.“‘;* - . -

(b) Large scale sensor and one conditioning gauge

i
| _ I al ‘
(c) Conditioning gauge over a homogeneous base field

. ) . o 2 2
Fig. 1L Comparison of the spatial variability ozi , UeZk and SeZk in a sample case where a) the larger scale sensor only, b) the larger scale

sensor and one conditioning gauge, and c) the conditioning gauge over a homogeneous base field, are used for reconsdruction fie
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Consider now a given sub-grid partition of the targetand finally compare the estimated conditional rainfall fields
region both in time, usindT = AT /1 , and space, using with that observed. Unfortunately, such rigorous validation
AS = AX myléz, which leads to the new grid is never possible, due to the common lack of any direct
dimensionsm=90[M and n=9 [N withd > 1 and measurements of spatially distributed rain fields. Indirect
1>1 (see Fig. 2). Again, a random variablg, methods are, therefore, usually addressed to perform both
(h =1....m Dh) can be associated with each sub-grid cellcalibration and validation exercises.
to represent the stochastic rainfall proceRsat each One possible technique for the evaluation of random field
location. The rain-gauge measurements are now attributeestimates, known as thjacknife method, is based on
to the corresponding sub-grid cells using the proper arealternately suppressing one out of the available conditioning
reduction factor, which is a function of the cell size. sensors at the ground and evaluation, for each generated

The expected value and variance of the random variableonditional rain field, of the marginal probability distribution

R, are now derived from : of the random variabIeRj at the corresponding grid cell.
r This is compared with the measured value at that cell and
Hg = E[Rh] =X [0OhO P(k) (27)  the procedure is repeated recursively for all the G nodes
T where arain gauge is located (see Papamichail and Metaxa,
of =CV2ui  OhOP(k) (28)  1996).

The procedure for conditional generation is therefore
where I, is the K element ofr = (r1 N : ) P(k) = {sub- evaluated on the basis of the following performance index:
grid cells belonging to theicell at larger scale} an@V is
the coefficient of variation.

1 G
The covariance matrix of :(Zl,Zz,....,me)— the MSE= G Z & (30)
new log-rainfall process at sub-grid scale — can also be =
evaluated, so that tleeposterioriestimate of the rain field where 5
at the larger scales acts here asatipeiori estimate of the - e = (rj - rl) is the error reduction at each cgll
sub-grid scale process in all ungauged locations. It is also where a sensor is located;
possible to define the stochastic log-rainfall process - rj* is the “ground truth” measured at cell
I, is the rainfall estimate at locationwhen
Z= (Zl, Zz):(Zl,....,ZG,ZG+1, ..... ,Zm) (29) measurement; is neglected;

The calibration parameters are contained in the functions

and, therefore, obtain the joint probability distribution of f (Xk) and g(xk S) used to transform the measurements

(Z2 | Zl), conditional on the G rain-gauge measurementgrovided by the large scale senggrinto thea priori mean

at sub-grid scale. and variance of the random field, and in the selected model
To calibrate the mappings defined by Eqns. (1) and (2for the correlation functionQ; . Application of the

and validate the proposed procedure, it would be necessawmalidation procedure to the reconstruction of a real rain field

to run several experiments with varying model parameterss described later with reference to the case study analysed.

B Gauged cell
N=2
M=2

o | 7

ras - +AS
60=4
n=8
m:8 H: \/2 ’ H: ’ T:2
AT AT

Fig. 2.Conceptual scheme of the downscaling procedure
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A case study corresponding to the core of the event over the Liguria region

For the storm event on May 28998 in northern Italy, the of Italy (see zoomed boxes).

meteorological situation at synoptic scale is well described The event analysed is embedded in a large-scale synoptic
by the Meteosat imagery in the thermal infrared (IR) banddisturbance associated with a pressure low located over
A sequence of such images is provided in Fig. 3north-west Europe and producing a flow of humid air rising

B0-30 LT

158 UTTE

Fig. 3. Sequence of IR Meteosat images from 06.30 to 10.58 UTC for the event of May 28th 1998 over Europe and zoomed ovealgorthern It
where the study area is located
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from the south of the Mediterranean Sea towards the coastalThe rain field has been discretised using a regular mesh
European regions. Such meteorological conditions persisbf 50x18 pixels, each a square of side 5 km. To be coherent
for a few days due to the blocking mechanism caused by with the temporal resolution of the rain-gauge information,

wide high located over Eastern Europe. hourly data have been used for reconstruction of the rain

During the evolution of the event, humid airflows impinge field at the original space scale (therefore after aggregation
on the west coast of Liguria causing strong low levelof the half-hourly original Meteosat images). For the sake
convergence at local scales and intense precipitation overf brevity, only results referring to a single time slot (09:00
the study area in the time window 05:00 to 16:00 UTC, . UTC) are shown here.

Low level convergence is associated with areas where the Similarly, rain-gauge rainfall fluctuations have been made
highest precipitation is observed, with values up to 100 mntoherent with the spatial resolution of the Meteosat images
in six hours, with the maximum rain rates at the groundby application of appropriate area reduction factors to
being recorded at Mele, reaching 47 mrh fihe location  comply with the adopted pixel size.
of the study area and the distribution of the available rain To apply the proposed procedure for reconstruction of
gauges are shown in Fig. 4 . The space-time distribution ahe precipitation field the following parameters must be
rainfall has been determined over the study area (abogpecified:

25 000 kn?) by using 44 active rain-gauges from the local
Hydrographic Service, most of them providing cumulatedl. second-order descnpuorﬂ@ GRk ) of the marginal
rainfall in hourly intervals. p.d.f. LN(uRk,U ) for k =1,....900;
2. correlation Coeff|C|ent$)IJ (I j=1...... 900) for the
precipitation field.

Derivation of the parameters of the marginal p.d.f. from
the rain-gauge data alone is scarcely reliable as the available
stations are quite sparse over the region and not uniformly
distributed. It seems more reasonable to estimate such
parameters from the large-scale sensor information, which
is represented in this case study by the Meteosat imagery. It
is well known that IR Meteosat data represent the top cloud
temperature and a suitable function is needed for mapping
the radiance temperature data (grey levels) into the
corresponding precipitation figures (e.g. Adler and Negri,
1988).

e =
\)—\ e -~ .I.AIesandrla S L\l
Carmagnola /?
MM f\'\ 4
Luserna $ Pralurmu
ata

J.Mnntaldu Scarampl
i Brlgnnle Fras
Vlllanuva Sularu J.Trelsu j

0 4 -

J.Bnhhm

f_z:;;;} ;‘D\/( LBra —TAlba /;M Acn! :
SamfeyrewJ Fossanni \ /rr ‘?T

1 Sumanu IS?“'E de J.Munte Cap[]ellmu

— Costigliole Saluzzu
| s W Farl liano nted & Prato Filtri
T - Mamharcam u ¢ emmu
‘\_.

'y
r____/ Bolzaneto Clcher

Mele _F,_,q__f

/ff/ FMagI, 4 i Llbaro “Tusein

Pa esu.
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* Sa\mna
K‘ Frahusa h .................................... Puzzosg\rf\
h’\ 1Callce
Llrr%me Plemnnte e \)')/

Cisano 4. & {&Ihenga

Fig. 4. Location of the study area and distribution of the available rain gauges. The dotted square denotes the area where
downscaling is applied.
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From repeated experiments the set of parameter values
16 1, Co=30, L;=12 which allows the most reliable reconstruction of the rainfall
w{ field corresponds tdC, =30, L, =8, L, =12 and
N . L=16 Yy =2. The reconstructed rain field obtained by
\‘ integration of the data from the two sensors (with parameters
10 C,=30,L,=8,L,=12 andy = 2) and the map of
standard deviationgy? (k =1....M [N) of the
. iy . .
random variables for the reconstructed field are shown in
Figs. 6 and 7. In Fig. 8 the reliability map is presented for
S? (k=1....,M [N) the derived rain field.
The observed ground truth and the estimate of the rain
o , , = ' _ figures are compared in Figs. 9 to 12. In Fig. 9 rain estimates
30 50 oo s 130 1 from Meteosat data, using (31) with paramet€s= 30,
L, =8, L, =12, and rain-gauge data are compared. In
Fig. 5.Mapping from Meteosat data (grey levels) to rain mean value 9. 10 the rain figures obtained with the proposed procedure
using Eqn. 31 with sample parameters. using a base homogeneous field (the mean value of rain-
gauge measurements) are compared with the rain-gauge

Intensity of precipitation in mm/t

The mapping of the Meteosat measurements (for eacfbservations.
single pixel) to the mean valugdg = E[R, ] has been In Fig. 11 the rain figures obtained with the proposed
obtained by using the following relationship: procedure using Meteosat data with the set of parameters

selected C, =30, L, =8, L, =12 and y = 2), are

-C x —C compared with the available ground truth, while in Fig. 12

f (Xk ) =L E% + 1%1‘%% ME (31) the same graph is presented where a single outlier — which
L, L, can be due to some measurement error — is eliminated.

The proposed procedure seems to provide the best

whereC,is the grey level threshold, is the shape parameter performances when integration of Meteosat data and rain-

andL, is a suitable coefficient (see Fig. 5). gauge measurements is addressed. This reflects the obvious

The above relationship may be considered as a suitabf@@servation that the additional information contained in

continuous refinement of the empirical rule proposed byMeteosat data does contribute to a better rain field
Adler and Negri (1988). A consta@V (equal to 1) has reconstruction than the use of rain-gauge measurements

been assumed, so that alone (homogeneous field). The scatterplot in Fig. 12 is
obtained by eliminating the contribution of the station of
g(xk) = (CV F (Xk ))2 (32)  Mele (see Fig. 2); note that the correlation obtained is about

0.8. The measurement in Mele can be considered an outlier

on the distance, the following decay model has been use@ut of the influence zone of the other instruments and, when
d. its contribution is neglected, the rain field information in
_ i

(33) that region only comes from the Meteosat images. It seems,
y therefore, reasonable to eliminate this information in the

with dij the Euclidean distance between pixedsd,. validation phase. o
Calibration of the coefficients in functions (31) and (33) Downscaling of the reconstructed rain field has been
sets of parameter values. In Table 1 a synthesis of sudiiom a sub-set of the available rain-gauges. Data with

results obtained is reported, as regards the calibration d€solution in time of 15 minutes have been used and the
parametery . sub-grid scale distribution of rainfall has been determined

down to a spatial scale of about 3%h/9 of the original
Table 1. Results for the case study analysed v@ith= 30, scale). The sub-region already identified in Fig. 6 where

L, =8andL, =12 the highest rain rates were observed in the case study
analysed, has been resized with a finer grid and the mean
y=0 y=1 y=2 Vy=3 y=4 Vy=8 values at the former scale have been used for determination

MSE 3032 2405 1935.1 2134.3 3056 3537.2 Of the parameters of the new joint probability density
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Fig. 6. Rainfall fieldr from Meteosat data constrained to rain-gauge
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Fig. 7. Standard deV|at|0n 2
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Fig. 8.Reliability map g2 (k =1...M D\I) of the rain field
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rainfall estimate (mm/10)

0 10 20 30 40 50 60 70 80
ground truth (mm/10)

Fig. 9. Meteosat data and ground truth

rainfall estimate (mm/10)

[ T T T T T T T —

0 50 100 150 200 250 300 350 400
ground truth (mm/10)

Fig. 11.Estimate values using Meteosat and ground truth
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Fig. 13 Downscaling results and ground truth
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Fig. 10.Estimate values using homogeneous field and ground truth
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Fig. 12.Same as in Fig. 11 with a single outlier eliminated

of the process with respect to that obtained at the original
scale. However, the variance of the rain field at finer scale
is greater than the variance at the original scale. Therefore,
with respect to the total variance, the explained variance
decreases provided any additional information at finer scales
(e.g. radar rain fields) is included.

In the first column of Fig. 14 the rainfall fields at 15-
minute intervals obtained after downscaling the 1-hour field
are shown while in the second column, maps of the standard
deviation for the random variables of the reconstructed fields
are reported.

Conclusions

function at the finer scale. The same procedure is then use®lain field reconstruction and downscaling procedures have
for determination of the rainfall field at a finer scale, been proposed for integration of rainfall data coming from
constrained at point values (five rain-gauges available) adlifferent sources. Each of them provides different

the corresponding new time scale.

information in terms of reliability and scale. The procedures

The scatterplot in Fig. 13 is analogous to those in Figspresented lead to the following results:
9-12, though the scarce number of rain-gauges availabl@d) mapping of the expected values of the reconstructed
reduces the significance of the validation exercise in this  rainfall field at the same resolution of the available large

context.

scale information, using point data as a constraint;

Obviously, downscaling increases the explained variancé2) mapping of the residual variance of the precipitation
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Fig. 14.Downscaling of the reconstructed rain field (on the left) and associated standard deviation maps (on the right)
for the case study analysed

212

Fa

Limss




A geostatistiical approach to multisensor rain field reconstruction and downscaling

process, i.e. a measure of the information content OfAcknowledgements
the reconstructed rain field;

(3) quantitative evaluation of the reliability of the rainfall TS Work has been partially funded by the talian MURST

under the national project “Climatic and Anthropogenic

field at ea.c.h Fe.l | of the g”d' . . Effects on Hydrological Processes”. It has also been partially
The probabilistic information obtained about the rainfall . .
funded by the National Group for Prevention from

field b d for stochasti ti f diff , . : .
slien;?igs ewuitsrf thgr Sufcosesz Igf gdee?teerre:nlior:no tr:eerrfsrllj-lydrogeolog|cal Disasters (GNDCI) of the Italian National
' purp 9 Council of Research (CNR).

associated with specific space-time rainfall extremes in the
region of concern, conditional on the available information
on the specific rain event. References

The proced.ure deV?IOped is based on the d?f'n't'on Okdler, R.F. and Negri, A.J., 1988. A satellite infrared technique
various functions, which are used for conversion of the to estimate tropical convective and stratiform rainfaliClim.

original information (as provided by the available sensors) Appl. Meteorol.27, 30-51.

: atia : : : . Bacchi, B. and Borga, M., 1993. Spatial correlation patterns and
into quantitative information about rainfall intensity, or rainfall fields analysisExcerpta, 7, 740,

better into suitable parameters characterising thesastin, G. and Gevers, M., 1985. Identification and optimal
probabilistic distribution of the rainfall field. Obviously,  estimation of random fields from scattered point-wise data,

i J ot : : : Automatica21, 139-155.
validation of such functions and their parameters is neede arancourt, C.. Creutin. J.D. and Rivoirard, J.. 1992. A method

by means of an extensive comparison with actual rainfall” tor jelineating and estimating rainfall field#%ater Resour. Res
measurements in a large number of case studies under28, 1133-1144.

monitoring: an overviewRemote Sensing Reviews, 23-48.
Throughout the paper we have assumed a CONSMINt g,et E.C. and Martin, D.W., 198The use of satellite data in

over the whole rain field. The method can be modified easily rainfall monitoring Academic Press, London.
to account for variabl€V, provided some physical meaning Box, G.E.P., Jenkins, G.M. and Reinsel, G.C., 19%#e Series

is associated with the variability of these parameters. Ong QEE‘LVSE' (Fé)é?lg?tz‘g :ﬁg g?:ut:?nmgné'cel‘g'gg' I\éi\t,;,ni:triiiy'd .

possibility is to investigate the role of local precipitation-  |ames d’eau spatiales a I'aide de données de pluviométres et de
enhancing mechanisms in the study area and to model themradar météorologique - Application au pas de temps journalier

: ; ; dans la région de Montréal, Hydrol, 98, 315-344.
€.g. orographlc forcing thro‘?gh suitable pat.terns (maps) 0If<rajewski, W.F., 1987. Cokriging radar-rainfall and rain gage data,
CVs. This could be valuable in the downscaling frameworks Geophys. Re92, 9571-9580.
as it allows one to include small-scale sources of variabilityLanza, L.G., 2000. A conditional simulation model of intermittent
in the process which are not yet captured by the large-scale'ain fields,Hydrol. Earth Sys. Scid, 173-183.

b ti the individual int t apamichail, D.M. and Metaxa, |.G., 1996. Geostatistical analysis
observations or the individual point measurements of spatial variability of rainfall and optimal design of a rain

rainfall. gauge network\Water Resour. Managl0, 107-127.
Further important features of space-time rainfall are notSeo, D-J-ly KfaJE\;VSk_th\lliFd andf Bowles, D.S. 199((31&- SdtOCha_StIC
: - . interpolation of rainfa ata from rain gages and radar using
fully resolved by the pr.oposed rain flgld regonstrugtlon cokriging — 1 — Design of experimentater Resour, Re6,
model, such as the bursting nature of rainfall with fractional 469-477.
coverage and alternate rain / no rain periods. In the approaé¥eo, D.J., Krajewski, W.F., Azimi-Zonooz, A. and Bowles, D.S.,

presented, the modelling of such features is limited and 1990b. Stochastic in'_[e_rpolation of rainfall data from rain gages
. and radar using cokriging — 2 — Result&gter Resour. Re26,
reduced to the pattern that can be observed by the availableg5_go4.

rain-gauges. In the case of a sparse network, the fractiongko, D.J., 1998a. Real-time estimation of rainfall fields using rain
pattern between contiguous rain-gauges cannot be gggg data under fractional coverage conditidndydrol, 208,
gccounted for |n.th|s mF’de'- Future developme_nts, po_ss'bhéeo, D.J., 1998b. Real-time estimation of rainfall fields using radar
in synergy with intermittent models of space-time rainfall rainfall and rain gage data, Hydrol, 208 37-52.

(e.g. Lanza, 2000) may allow integration of such modellingSevruk, B. and Lapin, M., 199Brecipitation Measurement and

_— : : . Quality Control Proc. Symp. on Precipitation and Evaporation,
capabilities. This should procegd in parallel with the Slovak Hydromet. Institute, Bratislava and Swiss Federal Inst.
development of enhanced observing systems, such as radaigf Technology, Dep. of Geography, Zurich.

networks, to obtain a measure of the space-time
characteristics of fractional rain fields.

213



